NAG Library Function Document

nag_order_data (g10zac)

1 Purpose

nag_order_data (g10zac) orders and weights data which is entered unsequentially, weighted or unweighted.

2 Specification

```c
#include <nag.h>
#include <nagg10.h>

void nag_order_data (Integer n, const double x[], const double y[],
                   const double weights[], Integer *nord, double xord[], double yord[],
                   double wwt[], double *rss, NagError *fail)
```

3 Description

Given a set of observations \((x_i, y_i) \) for \(i = 1, 2, \ldots, n \), with corresponding weights \(w_i \), nag_order_data (g10zac) rearranges the observations so that the \(x_i \) are in ascending order.

For any equal \(x_i \) in the ordered set, say \(x_j = x_{j+1} = \cdots = x_{j+k} \), a single observation \(x_j \) is returned with a corresponding \(y' \) and \(w' \), calculated as:

\[
w' = \sum_{i=0}^{k} w_{j+i}
\]

and

\[
y' = \frac{\sum_{i=0}^{k} w_{j+i} y_{j+i}}{w'}.
\]

Observations with zero weight are ignored. If no weights are supplied by you, then unit weights are assumed; that is \(w_i = 1 \), for \(i = 1, 2, \ldots, n \).

In addition, the within group sum of squares is computed for the tied observations using West’s algorithm (see West (1979)).

4 References

5 Arguments

1: \(n \) – Integer \hspace{1cm} \textit{Input}

\textit{On entry:} the number of observations, \(n \).

\textit{Constraint:} \(n \geq 1 \).

2: \(x[n] \) – const double \hspace{1cm} \textit{Input}

\textit{On entry:} the values \(x_i \), for \(i = 1, 2, \ldots, n \).
3: \[y[n] \] – const double
 \textit{Input}
 \textit{On entry:} the values \(y_i \), for \(i = 1, 2, \ldots, n \).

4: \[\text{weights}[n] \] – const double
 \textit{Input}
 \textit{On entry:} \text{weights} must contain the \(n \) weights, if they are required. Otherwise, \text{weights} must be set to NULL.
 \textit{Constraints:}
 if \text{weights} are required, then \text{weights}[i - 1] \geq 0.0, \text{ for } i = 1, 2, \ldots, n;\]
 \at least one \text{weights}[i - 1] > 0.0, \text{ for some } i.

5: \[\text{nord} \] – Integer *
 \textit{Output}
 \textit{On exit:} the number of distinct observations.

6: \[\text{xord}[n] \] – double
 \textit{Output}
 \textit{On exit:} the first \text{nord} elements contain the ordered and distinct \(x_i \).

7: \[\text{yord}[n] \] – double
 \textit{Output}
 \textit{On exit:} the first \text{nord} elements contain the values \(y_i \) corresponding to the values in \text{xord}.

8: \[\text{wwt}[n] \] – double
 \textit{Output}
 \textit{On exit:} the first \text{nord} elements contain the values \(w_i \) corresponding to the values of \text{xord} and \text{yord}.

9: \[\text{rss} \] – double *
 \textit{Output}
 \textit{On exit:} the within group sum of squares for tied observations.

10: \[\text{fail} \] – NagError *
 \textit{Input/Output}
 \textit{The NAG error argument (see Section 3.6 in the Essential Introduction).}

6 \quad \textbf{Error Indicators and Warnings}

\textbf{NE_ALLOC_FAIL}
Dynamic memory allocation failed.

\textbf{NE_ARRAY_CONS}
The contents of array \text{weights} are not valid.
Constraint: at least one element of \text{weights} must be > 0.

\textbf{NE_INT_ARG_LT}
On entry, \(n = \langle \text{value} \rangle \).
Constraint: \(n \geq 1 \).

\textbf{NE_INTERNAL_ERROR}
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

\textbf{NE_REAL_ARRAY_CONS}
On entry, \text{weights}[i] = \langle \text{value} \rangle.
Constraint: \text{weights}[i] \geq 0.0, \text{ for } i = 0, 1, \ldots, n - 1.
7 Accuracy
For a discussion on the accuracy of the algorithm for computing mean and variance see West (1979).

8 Parallelism and Performance
Not applicable.

9 Further Comments
nag_order_data (g10zac) may be used to compute the pure error sum of squares in simple linear regression along with nag_regrsn_mult_linear (g02dac), see Draper and Smith (1985).

10 Example
A set of unweighted observations are input and nag_order_data (g10zac) used to produce a set of strictly increasing weighted observations.

10.1 Program Text
/* nag_order_data (g10zac) Example Program.
 * Copyright 2014 Numerical Algorithms Group.
 * Mark 6, 2000.
 */
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg10.h>

int main(void)
{
 Integer exit_status = 0, i, *iwrk = 0, n, nord;
 NagError fail;
 char weight[2];
 double rss, *weights = 0, *wtord = 0, *wtpttr, *x = 0, *xord = 0, *y = 0;
 double *yord = 0;
 INIT_FAIL(fail);

 printf("nag_order_data (g10zac) Example Program Results\n");

 /* Skip heading in data file */
 #ifdef _WIN32
 scanf_s("%*[\n]");
 #else
 scanf("%*[\n]");
 #endif

 #ifdef _WIN32
 scanf_s("%"NAG_IFMT", &n);
 #else
 scanf("%"NAG_IFMT", &n);
 #endif

 if (!(x = NAG_ALLOC(n, double))
 || !(y = NAG_ALLOC(n, double))
 || !(weights = NAG_ALLOC(n, double))
 || !(xord = NAG_ALLOC(n, double))
 || !(yord = NAG_ALLOC(n, double))
 || !(wtord = NAG_ALLOC(n, double))
 || !(iwrk = NAG_ALLOC(n, Integer)))
 {
 printf("Allocation failure\n");
 exit_status = -1;
#ifdef _WIN32
 scanf_s(" %1s ", weight, _countof(weight));
#else
 scanf(" %1s ", weight);
#endif
for (i = 1; i <= n; ++i)
#ifdef _WIN32
 scanf_s("%lf %lf", &x[i - 1], &y[i - 1]);
#else
 scanf("%lf %lf", &x[i - 1], &y[i - 1]);
#endif
if (*weight == 'W')
 wtptr = weights;
else
 wtptr = 0;
/* nag_order_data (g10zac).
* Reorder data to give ordered distinct observations
*/
 nag_order_data(n, x, y, wtptr, &nord, xord, yord, wtord, &rss, &fail);
if (fail.code != NE_NOERROR)
{
 printf("Error from nag_order_data (g10zac).\n%s\n", fail.message);
 exit_status = 1;
 goto END;
}
/* Print results */
printf("\n");
printf("%s%6"NAG_IFMT"
", "Number of distinct observations = ",
 nord);
printf("%s%13.5f\n", "Residual sum of squares = ", rss);
printf("\n");
printf("%s%13.5f %13.5f %13.5f\n", xord[i - 1],
 yord[i - 1], wtord[i - 1]);
END:
 NAG_FREE(x);
 NAG_FREE(y);
 NAG_FREE(weights);
 NAG_FREE(xord);
 NAG_FREE(yord);
 NAG_FREE(wtord);
 NAG_FREE(iwrk);
 return exit_status;
}

10.2 Program Data

nag_order_data (g10zac) Example Program Data
10
U
1.0 4.0
3.0 4.0
5.0 1.0
5.0 2.0
3.0 5.0
4.0 3.0
9.0 4.0
6.0 9.0
9.0 7.0
9.0 4.0
10.3 Program Results

nag_order_data (g10zac) Example Program Results

Number of distinct observations = 6
Residual sum of squares = 7.00000

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>WEIGHTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00000</td>
<td>4.00000</td>
<td>1.00000</td>
</tr>
<tr>
<td>3.00000</td>
<td>4.50000</td>
<td>2.00000</td>
</tr>
<tr>
<td>4.00000</td>
<td>3.00000</td>
<td>1.00000</td>
</tr>
<tr>
<td>5.00000</td>
<td>1.50000</td>
<td>2.00000</td>
</tr>
<tr>
<td>6.00000</td>
<td>9.00000</td>
<td>1.00000</td>
</tr>
<tr>
<td>9.00000</td>
<td>5.00000</td>
<td>3.00000</td>
</tr>
</tbody>
</table>