NAG Library Function Document

nag_sign_test (g08aac)

1 Purpose
nag_sign_test (g08aac) performs the Sign test on two related samples of size \(n \).

2 Specification

```c
#include <nag.h>
#include <nagg08.h>

void nag_sign_test (Integer n, const double x[], const double y[],
                    Integer *s, double *p, Integer *non_tied, NagError *fail)
```

3 Description
The Sign test investigates the median difference between pairs of scores from two matched samples of size \(n \), denoted by \(\{x_i, y_i\} \), for \(i = 1, 2, \ldots, n \). The hypothesis under test, \(H_0 \), often called the null hypothesis, is that the medians are the same, and this is to be tested against a one- or two-sided alternative \(H_1 \) (see below).

nag_sign_test (g08aac) computes:

(a) the test statistic \(S \), which is the number of pairs for which \(x_i < y_i \);
(b) the number \(n_1 \) of non-tied pairs \((x_i \neq y_i) \);
(c) the lower tail probability \(p \) corresponding to \(S \) (adjusted to allow the complement \(1 - p \) to be used in an upper one tailed or a two tailed test). \(p \) is the probability of observing a value \(\leq S \) if \(S < \frac{1}{2}n_1 \), or of observing a value \(< S \) if \(S > \frac{1}{2}n_1 \), given that \(H_0 \) is true. If \(S = \frac{1}{2}n_1 \), \(p \) is set to 0.5.

Suppose that a significance test of a chosen size \(\alpha \) is to be performed (i.e., \(\alpha \) is the probability of rejecting \(H_0 \) when \(H_0 \) is true; typically \(\alpha \) is a small quantity such as 0.05 or 0.01). The returned value of \(p \) can be used to perform a significance test on the median difference, against various alternative hypotheses \(H_1 \), as follows

(i) \(H_1 \): median of \(x \neq \) median of \(y \). \(H_0 \) is rejected if \(2 \times \min(p, 1 - p) < \alpha \).
(ii) \(H_1 \): median of \(x > \) median of \(y \). \(H_0 \) is rejected if \(p < \alpha \).
(iii) \(H_1 \): median of \(x < \) median of \(y \). \(H_0 \) is rejected if \(1 - p < \alpha \).

4 References

5 Arguments

1: \(n \) – Integer

 Input

 On entry: \(n \), the size of each sample.

 Constraint: \(n \geq 1 \).

2: \(x[n] \) – const double

 Input

 On entry: \(x[i-1] \) and \(y[i-1] \) must be set to the \(i \)th pair of data values, \(\{x_i, y_i\} \), for \(i = 1, 2, \ldots, n \).

3: \(y[n] \) – const double

 Input

 On entry: \(x[i-1] \) and \(y[i-1] \) must be set to the \(i \)th pair of data values, \(\{x_i, y_i\} \), for \(i = 1, 2, \ldots, n \).
4: \(s \) – Integer *
 \textit{Output}
 \textit{On exit}: the Sign test statistic, \(S \).

5: \(p \) – double *
 \textit{Output}
 \textit{On exit}: the lower tail probability, \(p \), corresponding to \(S \).

6: \texttt{non_tied} – Integer *
 \textit{Output}
 \textit{On exit}: the number of non-tied pairs, \(n_1 \).

7: \texttt{fail} – NagError *
 \textit{Input/Output}
 The NAG error argument (see Section 3.6 in the Essential Introduction).

6 \hspace{2em} \textbf{Error Indicators and Warnings}

\textbf{NE ALLOC_FAIL}
Dynamic memory allocation failed.

\textbf{NE_INT}
On entry, \(n = \text{(value)} \).
Constraint: \(n \geq 1 \).

7 \hspace{2em} \textbf{Accuracy}

The tail probability, \(p \), is computed using the relationship between the binomial and beta distributions.
For \(n_1 < 120 \), \(p \) should be accurate to at least 4 significant figures, assuming that the machine has a precision of 7 or more digits.
For \(n_1 \geq 120 \), \(p \) should be computed with an absolute error of less than 0.005.
For further details see nag_prob_beta_dist (g01eec).

8 \hspace{2em} \textbf{Parallelism and Performance}

Not applicable.

9 \hspace{2em} \textbf{Further Comments}

The time taken by nag_sign_test (g08aac) is small, and increases with \(n \).

10 \hspace{2em} \textbf{Example}

This example is taken from page 69 of Siegel (1956). The data relates to ratings of ‘insight into paternal discipline’ for 17 sets of parents, recorded on a scale from 1 to 5.

10.1 \hspace{2em} \textbf{Program Text}

/* \texttt{nag_sign_test} (g08aac) Example Program.
 *
 * Copyright 2014 Numerical Algorithms Group.
 *
 * Mark 6, 2000.
 */

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg08.h>
int main(void)
{
 Integer exit_status = 0, i, n, non_tied, s;
 NagError fail;
 double p, *x = 0, *y = 0;

 INIT_FAIL(fail);

 printf("nag_sign_test (g08aac) Example Program Results\n");

 /* Skip heading in data file */
 #ifdef _WIN32
 scanf_s("%*[\n");
 #else
 scanf("%*[\n");
 #endif

 n = 17;
 if (!(x = NAG_ALLOC(n, double))
 || !(y = NAG_ALLOC(n, double)))
 {
 printf("Allocation failure\n");
 exit_status = -1;
 goto END;
 }

 for (i = 1; i <= n; i++)
 {
 #ifdef _WIN32
 scanf_s("%lf", &x[i-1]);
 #else
 scanf("%lf", &x[i-1]);
 #endif
 }

 for (i = 1; i <= n; i++)
 {
 #ifdef _WIN32
 scanf_s("%lf", &y[i-1]);
 #else
 scanf("%lf", &y[i-1]);
 #endif
 }

 /* nag_sign_test (g08aac).
 * Sign test on two paired samples
 */
 nag_sign_test(n, x, y, &s, &p, &non_tied, &fail);
 if (fail.code != NE_NOERROR)
 {
 printf("Error from nag_sign_test (g08aac).\n", fail.message);
 exit_status = 1;
 goto END;
 }

 printf("%s%5"NAG_IFMT"\n", "Test statistic ", s);
 printf("%s%5"NAG_IFMT"\n", "Observations ", non_tied);
 printf("%s%5.3f\n", "Lower tail prob. ", p);

 END:
 NAG_FREE(x);
 NAG_FREE(y);
 return exit_status;
}
10.2 Program Data

nag_sign_test (g08aac) Example Program Data

4 4 5 5 3 2 5 3 1 5 5 5 4 5 5 5 5 5
2 3 3 3 3 3 3 3 2 2 2 5 2 5 3 1

10.3 Program Results

nag_sign_test (g08aac) Example Program Results

Sign test

Data values

4 4 5 5 3 2 5 3 1 5 5 5 4 5 5 5 5
2 3 3 3 3 3 3 3 2 2 2 5 2 5 3 1

Test statistic 3
Observations 14
Lower tail prob. 0.029