NAG Library Function Document

nag_outlier_peirce_two_var (g07gbc)

1 Purpose

nag_outlier_peirce_two_var (g07gbc) returns a flag indicating whether a single data point is an outlier as defined by Peirce’s criterion.

2 Specification

```c
#include <nag.h>
#include <nagg07.h>
Nag_Boolean nag_outlier_peirce_two_var (Integer n, double e, double var1,
                              double var2, double *x, double *lx, double *ux, NagError *fail)
```

3 Description

nag_outlier_peirce_two_var (g07gbc) tests a potential outlying value using Peirce’s criterion. Let

\(e \) denote a vector of \(n \) residuals with mean zero and variance \(\sigma^2 \) obtained from fitting some model \(M \) to a series of data \(y \),

\(\hat{c} \) denote the largest absolute residual in \(e \), i.e., \(|\hat{c}| \geq |e_i|\) for all \(i \), and let \(\hat{y} \) denote the data series \(y \) with the observation corresponding to \(\hat{c} \) having been omitted,

\(\hat{\sigma}^2 \) denote the residual variance on fitting model \(M \) to \(\hat{y} \),

\(\lambda \) denote the ratio of \(\hat{\sigma} \) and \(\sigma \) with \(\lambda = \frac{\hat{\sigma}}{\sigma} \).

Peirce’s method flags \(\hat{c} \) as a potential outlier if \(|\hat{c}| \geq x\), where \(x = \sigma^2 z \) and \(z \) is obtained from the solution of

\[
R = \lambda^{1-n} \frac{(n-1)^{n-1}}{n^n}
\]

(1)

where

\[
R = 2 \exp \left(\frac{(z^2 - 1)}{2} (1 - \Phi(z)) \right)
\]

(2)

and \(\Phi \) is the cumulative distribution function for the standard Normal distribution.

Unlike nag_outlier_peirce (g07gac), both \(\sigma^2 \) and \(\hat{\sigma}^2 \) must be supplied and therefore no assumptions are made about the nature of the relationship between these two quantities. Only a single potential outlier is tested for at a time.

This function uses an algorithm described in nag_opt_one_var_no_deriv (e04abc) to refine a lower, \(l \), and upper, \(u \), limit for \(x \). This refinement stops when \(|\hat{c}| < l \) or \(|\hat{c}| > u \).

4 References

Gould B A (1855) On Peirce’s criterion for the rejection of doubtful observations, with tables for facilitating its application *The Astronomical Journal* 45

Peirce B (1852) Criterion for the rejection of doubtful observations *The Astronomical Journal* 45
5 Arguments

1: \(n \) – Integer

 On entry: \(n \), the number of observations.

 Constraint: \(n \geq 3 \).

2: \(e \) – double

 On entry: \(e \), the value being tested.

3: \(\text{var1} \) – double

 On entry: \(\sigma^2 \), the residual variance on fitting model \(M \) to \(y \).

 Constraint: \(\text{var1} > 0.0 \).

4: \(\text{var2} \) – double

 On entry: \(\tilde{\sigma}^2 \), the residual variance on fitting model \(M \) to \(\tilde{y} \).

 Constraints:

 \[
 \begin{align*}
 \text{var2} & > 0.0; \\
 \text{var2} & < \text{var1}.
 \end{align*}
 \]

5: \(x \) – double *

 On exit: an estimated value of \(x \), the cutoff that indicates an outlier.

6: \(lx \) – double *

 On exit: \(l \), the lower limit for \(x \).

7: \(ux \) – double *

 On exit: \(u \), the upper limit for \(x \).

8: \(\text{fail} \) – NagError *

 The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM

On entry, argument \(\langle \text{value} \rangle \) had an illegal value.

NE_INT

On entry, \(n = \langle \text{value} \rangle \).

Constraint: \(n \geq 3 \).

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.

See Section 3.6.6 in the Essential Introduction for further information.
Your licence key may have expired or may not have been installed correctly. See Section 3.6.5 in the Essential Introduction for further information.

On entry, \(\text{var1} = (value) \).
Constraint: \(\text{var1} > 0.0 \).

On entry, \(\text{var2} = (value) \).
Constraint: \(\text{var2} > 0.0 \).

On entry, \(\text{var1} = (value) \), \(\text{var2} = (value) \).
Constraint: \(\text{var2} < \text{var1} \).

Accuracy
Not applicable.

Parallelism and Performance
Not applicable.

Further Comments
None.

Example
This example reads in a series of values and variances and checks whether each is a potential outlier. The dataset used is from Peirce’s original paper and consists of fifteen observations on the vertical semidiameter of Venus. Each subsequent line in the dataset, after the first, is the result of dropping the observation with the highest absolute value from the previous data and recalculating the variance.

10.1 Program Text
/* nag_outlier_peirce_two_var (g07gbc) Example Program. *
 * Copyright 2014 Numerical Algorithms Group. *
 * Mark 23, 2011. *
 */

/* Pre-processor includes */
#include <stdio.h>
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg07.h>

int main(void)
{

/* Integer scalar and array declarations */
Integer n, exit_status;

/* NAG structures and types */
Nag_Boolean outlier;
NagError fail;

// Rest of the program text
double e, var1, var2, x, lx, ux;

INIT_FAIL(fail);
exit_status = 0;

printf("nag_outlier_peirce_two_var (g07gbc) Example Program Results\n\n\n/* Skip headings in data file */
#ifdef _WIN32
 scanf_s("%*[\n] ");
#else
 scanf("%*[\n] ");
#endif

/* Loop through all the lines in the input file, reading in the sample size,
variances and value to test */
#ifdef _WIN32
while (scanf_s("%"NAG_IFMT" %lf %lf %lf%*[\n] ", &n, &e, &var1, &var2)
!= EOF) {
#else
while (scanf("%"NAG_IFMT" %lf %lf %lf%*[\n] ", &n, &e, &var1, &var2)
!= EOF) {
#endif

/* Use nag_outlier_peirce_two_var (g07gbc) to check whether e is a
potential outlier */
outlier = nag_outlier_peirce_two_var(n, e, var1, var2, &x, &lx, &ux, &fail);
if (fail.code != NE_NOERROR) {
 printf("Error from nag_outlier_peirce_two_var (g07gbc).\n\n%s\n", fail.message);
 exit_status = 1;
 goto END;
}

/* Display the results */
printf(" Sample size : %10"NAG_IFMT"
", n);
printf(" Largest absolute residual (E) : %10.3f\n", e);
printf(" Variance for whole sample : %10.3f\n", var1);
printf(" Variance excluding E : %10.3f\n", var2);
printf(" Estimate for cutoff (X) : %10.3f\n", x);
printf(" Lower limit for cutoff (LX) : %10.3f\n", lx);
printf(" Upper limit for cutoff (UX) : %10.3f\n", ux);
if (outlier)
 printf(" E is a potential outlier\n");
else
 printf(" E does not appear to be an outlier\n");

END:
return exit_status;

10.2 Program Data
nag_outlier_peirce_two_var (g07gbc) Example Program Data
15 -1.40 0.303 0.161 :: n, e, var1, var2
14 1.01 0.161 0.103 :: n, e, var1, var2
13 0.63 0.103 0.080 :: n, e, var1, var2
10.3 Program Results

nag_outlier_peirce_two_var (g07gbc) Example Program Results

<table>
<thead>
<tr>
<th>Sample size</th>
<th>Largest absolute residual (E)</th>
<th>Variance for whole sample</th>
<th>Variance excluding E</th>
<th>Estimate for cutoff (X)</th>
<th>Lower limit for cutoff (LX)</th>
<th>Upper limit for cutoff (UX)</th>
<th>E is a potential outlier</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>-1.400</td>
<td>0.303</td>
<td>0.161</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>E is a potential outlier</td>
</tr>
<tr>
<td>14</td>
<td>1.010</td>
<td>0.161</td>
<td>0.103</td>
<td>0.105</td>
<td>0.100</td>
<td>0.110</td>
<td>E is a potential outlier</td>
</tr>
<tr>
<td>13</td>
<td>0.630</td>
<td>0.103</td>
<td>0.080</td>
<td>1.059</td>
<td>1.011</td>
<td>1.155</td>
<td>E does not appear to be an outlier</td>
</tr>
</tbody>
</table>