NAG Library Function Document

nag_rank_ci_1var (g07eac)

1 Purpose

nag_rank_ci_1var (g07eac) computes a rank based (nonparametric) estimate and confidence interval for
the location argument of a single population.

2 Specification

```c
#include <nag.h>
#include <nagg07.h>

void nag_rank_ci_1var (Nag_RCIMethod method, Integer n, const double x[],
                        double clevel, double *theta, double *thetal, double *thetau,
                        double *estcl, double *wlower, double *wupper, NagError *fail)
```

3 Description

Consider a vector of independent observations, \(x = (x_1, x_2, \ldots, x_n)^T \) with unknown common symmetric
density \(f(x - \theta) \). nag_rank_ci_1var (g07eac) computes the Hodges–Lehmann location estimator (see
Lehmann (1975)) of the centre of symmetry \(\theta \), together with an associated confidence interval. The
Hodges–Lehmann estimate is defined as

\[
\hat{\theta} = \text{median}\left\{\frac{x_i + x_j}{2}, 1 \leq i \leq j \leq n\right\}.
\]

Let \(m = \frac{n(n+1)}{2} \) and let \(a_k \), for \(k = 1, 2, \ldots, m \) denote the \(m \) ordered averages \(\frac{x_i + x_j}{2} \) for
\(1 \leq i \leq j \leq n \). Then

- if \(m \) is odd, \(\hat{\theta} = a_k \) where \(k = \frac{m+1}{2} \);
- if \(m \) is even, \(\hat{\theta} = (a_k + a_{k+1})/2 \) where \(k = \frac{m}{2} \).

This estimator arises from inverting the one-sample Wilcoxon signed-rank test statistic, \(W(x - \theta_0) \), for
testing the hypothesis that \(\theta = \theta_0 \). Effectively \(W(x - \theta_0) \) is a monotonically decreasing step function of
\(\theta_0 \) with

\[
\text{mean}(W) = \mu = \frac{n(n+1)}{4},
\]

\[
\text{var}(W) = \sigma^2 = \frac{n(n+1)(2n+1)}{24}.
\]

The estimate \(\hat{\theta} \) is the solution to the equation \(W\left(x - \hat{\theta}\right) = \mu \); two methods are available for solving this
equation. These methods avoid the computation of all the ordered averages \(a_k \); this is because for large \(n \)
both the storage requirements and the computation time would be excessive.

The first is an exact method based on a set partitioning procedure on the set of all ordered averages \(\frac{x_i + x_j}{2} \) for \(i \leq j \). This is based on the algorithm proposed by Monahan (1984).

The second is an iterative algorithm, based on the Illinois method which is a modification of the \textit{regula falsi} method, see McKean and Ryan (1977). This algorithm has proved suitable for the function
\(W(x - \theta_0) \) which is asymptotically linear as a function of \(\theta_0 \).

The confidence interval limits are also based on the inversion of the Wilcoxon test statistic.

Given a desired percentage for the confidence interval, \(1 - \alpha \), expressed as a proportion between 0 and
1, initial estimates for the lower and upper confidence limits of the Wilcoxon statistic are found from
\[W_l = \mu - 0.5 + (\sigma \Phi^{-1}(\alpha/2)) \]

and

\[W_u = \mu + 0.5 + (\sigma \Phi^{-1}(1 - \alpha/2)), \]

where \(\Phi^{-1} \) is the inverse cumulative Normal distribution function.

\(W_l \) and \(W_u \) are rounded to the nearest integer values. These estimates are then refined using an exact method if \(n \leq 80 \), and a Normal approximation otherwise, to find \(W_l \) and \(W_u \) satisfying

\[
\begin{align*}
P(W \leq W_l) & \leq \alpha/2 \\
P(W \leq W_l + 1) & > \alpha/2
\end{align*}
\]

and

\[
\begin{align*}
P(W \geq W_u) & \leq \alpha/2 \\
P(W \geq W_u - 1) & > \alpha/2.
\end{align*}
\]

Let \(W_u = m - k \); then \(\theta_l = a_{k+1} \). This is the largest value \(\theta_l \) such that \(W(x - \theta_l) = W_u \).

Let \(W_l = k \); then \(\theta_u = a_{m-k} \). This is the smallest value \(\theta_u \) such that \(W(x - \theta_u) = W_l \).

As in the case of \(\hat{\theta} \), these equations may be solved using either the exact or the iterative methods to find the values \(\theta_l \) and \(\theta_u \).

Then \((\theta_l, \theta_u) \) is the confidence interval for \(\theta \). The confidence interval is thus defined by those values of \(\theta_0 \) such that the null hypothesis, \(\theta = \theta_0 \), is not rejected by the Wilcoxon signed-rank test at the \((100 \times \alpha)\%\) level.

4 References

Lehmann E L (1975) *Nonparametrics: Statistical Methods Based on Ranks* Holden–Day

5 Arguments

1: \hspace{1cm} \textbf{method} – Nag_RCI\text{Method} \hspace{1cm} \textbf{Input}

\textit{On entry:} specifies the method to be used.

- \textbf{method} = Nag_RCI_Exact

 The exact algorithm is used.

- \textbf{method} = Nag_RCI_Approx

 The iterative algorithm is used.

\textit{Constraint:} \textbf{method} = Nag_RCI_Exact or Nag_RCI_Approx.

2: \hspace{1cm} \textbf{n} – Integer \hspace{1cm} \textbf{Input}

\textit{On entry:} \(n \), the sample size.

\textit{Constraint:} \(n \geq 2 \).
3: \(x[n]\) – const double

Input

On entry: the sample observations, \(x_i\), for \(i = 1, 2, \ldots, n\).

4: \(c\text{level}\) – double

Input

On entry: the confidence interval desired.

For example, for a 95\% confidence interval set \(c\text{level} = 0.95\).

Constraint: \(0.0 < c\text{level} < 1.0\).

5: \(\theta\) – double *

Output

On exit: the estimate of the location, \(\hat{\theta}\).

6: \(\theta_l\) – double *

Output

On exit: the estimate of the lower limit of the confidence interval, \(\theta_l\).

7: \(\theta_u\) – double *

Output

On exit: the estimate of the upper limit of the confidence interval, \(\theta_u\).

8: \(\text{estcl}\) – double *

Output

On exit: an estimate of the actual percentage confidence of the interval found, as a proportion between \((0.0, 1.0)\).

9: \(w\text{lower}\) – double *

Output

On exit: the upper value of the Wilcoxon test statistic, \(W_u\), corresponding to the lower limit of the confidence interval.

10: \(w\text{upper}\) – double *

Output

On exit: the lower value of the Wilcoxon test statistic, \(W_l\), corresponding to the upper limit of the confidence interval.

11: \(\text{fail}\) – NagError *

Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM

On entry, argument \(\langle\text{value}\rangle\) had an illegal value.

NE_CONVERGENCE

Warning. The iterative procedure to find an estimate of the lower confidence point had not converged in 100 iterations.

Warning. The iterative procedure to find an estimate of Theta had not converged in 100 iterations.

Warning. The iterative procedure to find an estimate of the upper confidence point had not converged in 100 iterations.
NE_INT
On entry, \(n = \langle \text{value} \rangle \).
Constraint: \(n \geq 2 \).

NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

NE_NO LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

NE_REAL
On entry, \(clevel \) is out of range: \(clevel = \langle \text{value} \rangle \).

NE_SAMPLE_IDEN
Not enough information to compute an interval estimate since the whole sample is identical. The common value is returned in \(\theta, \theta_l \) and \(\theta_u \).

7 Accuracy
\text{nag_rank_ci_1var} (g07eac) should produce results accurate to five significant figures in the width of the confidence interval; that is the error for any one of the three estimates should be less than \(0.00001 \times (\theta_u - \theta_l) \).

8 Parallelism and Performance
\text{nag_rank_ci_1var} (g07eac) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users’ Note for your implementation for any additional implementation-specific information.

9 Further Comments
The time taken increases with the sample size \(n \).

10 Example
The following program calculates a 95% confidence interval for \(\theta \), a measure of symmetry of the sample of 50 observations.

10.1 Program Text
/* nag_rank_ci_1var (g07eac) Example Program. *
 * Copyright 2014 Numerical Algorithms Group. *
 * Mark 7, 2001. */
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
```c
#include <nagg07.h>

int main(void)
{
    /* Scalars */
    double clevel, estcl, theta, thetal, thetau, wlower, wupper;
    Integer exit_status, i, n;
    NagError fail;

    /* Arrays */
    double *x = 0;

    INIT_FAIL(fail);
    exit_status = 0;
    printf("nag_rank_ci_1var (g07eac) Example Program Results\n");

    /* Skip heading in data file */
    #ifdef _WIN32
    scanf_s("%*[\n ] ");
    #else
    scanf("%*[\n ] ");
    #endif

    /* Allocate memory */
    if (!(x = NAG_ALLOC(n, double)))
    {
        printf("Allocation failure\n");
        exit_status = -1;
        goto END;
    }

    for (i = 1; i <= n; ++i)
    {
        #ifdef _WIN32
        scanf_s("%lf", &x[i - 1]);
        #else
        scanf("%lf", &x[i - 1]);
        #endif

        #ifdef _WIN32
        scanf_s("%*[\n ] ");
        #else
        scanf("%*[\n ] ");
        #endif

        #ifdef _WIN32
        scanf_s("%lf%*[\n ] ", &clevel);
        #else
        scanf("%lf%*[\n ] ", &clevel);
        #endif

        /* nag_rank_ci_1var (g07eac).
         * Robust confidence intervals, one-sample */
        nag_rank_ci_1var(Nag_RCI_Exact, n, x, clevel, &theta, &thetal, &thetau,
                         &estcl, &wlower, &wupper, &fail);
        if (fail.code != NE_NOERROR)
        {
            printf("Error from nag_rank_ci_1var (g07eac).\n%s
", fail.message);
            exit_status = 1;
            goto END;
        }

        printf("\n");
    }
}
```
printf(" Location estimator Confidence Interval\n");
printf("\n");
printf("%10.4f (%6.4f , %6.4f)\n", theta, thetal, thetau);
printf("\n");
printf(" Corresponding Wilcoxon statistics\n");
printf("\n");
printf(" Lower : %8.2f\n", wlower);
printf(" Upper : %8.2f\n", wupper);
END:
NAG_FREE(x);
return exit_status;
}

10.2 Program Data

nag_rank_ci_1var (g07eac) Example Program Data
40
-0.23 0.35 -0.77 0.35 0.27 -0.72 0.08 -0.40 -0.76 0.45
 0.73 0.74 0.83 -0.87 0.21 -0.91 -0.04 0.82 -0.38
-0.31 0.24 -0.47 -0.68 -0.77 -0.86 -0.59 0.73 0.39 -0.44
 0.63 -0.22 -0.07 -0.43 -0.21 -0.31 0.64 -1.00 -0.86 -0.73
 0.95

10.3 Program Results

nag_rank_ci_1var (g07eac) Example Program Results

Location estimator Confidence Interval
 -0.1300 (-0.3300 , 0.0350)

Corresponding Wilcoxon statistics

Lower : 556.00
Upper : 264.00