NAG Library Function Document

nag_robust_trimmed_1var (g07ddc)

1 Purpose

nag_robust_trimmed_1var (g07ddc) calculates the trimmed and Winsorized means of a sample and estimates of the variances of the two means.

2 Specification

```c
#include <nag.h>
#include <nagg07.h>

void nag_robust_trimmed_1var (Integer n, const double x[], double alpha,
                            double *tmean, double *wmean, double *tvar, double *wvar, Integer *k,
                            double sx[], NagError *fail)
```

3 Description

nag_robust_trimmed_1var (g07ddc) calculates the α-trimmed mean and α-Winsorized mean for a given α, as described below.

Let x_i, for $i = 1, 2, \ldots, n$, represent the n sample observations sorted into ascending order. Let $k = \lfloor n\alpha \rfloor$ where $\lfloor y \rfloor$ represents the integer nearest to y; if $2k = n$ then k is reduced by 1.

Then the trimmed mean is defined as:

$$\bar{x}_t = \frac{1}{n - 2k} \sum_{i=k+1}^{n-k} x_i,$$

and the Winsorized mean is defined as:

$$\bar{x}_w = \frac{1}{n} \sum_{i=k+1}^{n-k} x_i + (k x_{k+1}) + (k x_{n-k}).$$

nag_robust_trimmed_1var (g07ddc) then calculates the Winsorized variance about the trimmed and Winsorized means respectively and divides by n to obtain estimates of the variances of the above two means.

Thus we have

$$\text{Estimate of } \text{var}(\bar{x}_t) = \frac{1}{n^2} \sum_{i=k+1}^{n-k} (x_i - \bar{x}_t)^2 + k(x_{k+1} - \bar{x}_t)^2 + k(x_{n-k} - \bar{x}_t)^2$$

and

$$\text{Estimate of } \text{var}(\bar{x}_w) = \frac{1}{n^2} \sum_{i=k+1}^{n-k} (x_i - \bar{x}_w)^2 + k(x_{k+1} - \bar{x}_w)^2 + k(x_{n-k} - \bar{x}_w)^2.$$

4 References

5 Arguments

1: \(n \) – Integer \hspace{1cm} \textit{Input}
 \textit{On entry}: the number of observations, \(n \).
 \textit{Constraint}: \(n \geq 2 \).

2: \(x[n] \) – const double \hspace{1cm} \textit{Input}
 \textit{On entry}: the sample observations, \(x_i \), for \(i = 1, 2, \ldots, n \).

3: \(\text{alpha} \) – double \hspace{1cm} \textit{Input}
 \textit{On entry}: the proportion of observations to be trimmed at each end of the sorted sample, \(\alpha \).
 \textit{Constraint}: \(0.0 \leq \alpha < 0.5 \).

4: \(\text{tmean} \) – double * \hspace{1cm} \textit{Output}
 \textit{On exit}: the \(\alpha \)-trimmed mean, \(\bar{x}_t \).

5: \(\text{wmean} \) – double * \hspace{1cm} \textit{Output}
 \textit{On exit}: the \(\alpha \)-Winsorized mean, \(\bar{x}_w \).

6: \(\text{tvar} \) – double * \hspace{1cm} \textit{Output}
 \textit{On exit}: contains an estimate of the variance of the trimmed mean.

7: \(\text{wvar} \) – double * \hspace{1cm} \textit{Output}
 \textit{On exit}: contains an estimate of the variance of the Winsorized mean.

8: \(k \) – Integer * \hspace{1cm} \textit{Output}
 \textit{On exit}: contains the number of observations trimmed at each end, \(k \).

9: \(\text{sx}[n] \) – double \hspace{1cm} \textit{Output}
 \textit{On exit}: contains the sample observations sorted into ascending order.

10: \(\text{fail} \) – NagError * \hspace{1cm} \textit{Input/Output}
 The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_INT_ARG_LT
 \textit{On entry}, \(n = \langle \text{value} \rangle \).
 \textit{Constraint}: \(n \geq 2 \).

NE_INTERNAL_ERROR
 An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

NE_REAL_ARG_GE
 \textit{On entry}, \(\text{alpha} \) must not be greater than or equal to 0.5: \(\alpha = \langle \text{value} \rangle \).

NE_REAL_ARG_LT
 \textit{On entry}, \(\text{alpha} \) must not be less than 0.0: \(\alpha = \langle \text{value} \rangle \).
7 **Accuracy**

The results should be accurate to within a small multiple of *machine precision*.

8 **Parallelism and Performance**

Not applicable.

9 **Further Comments**

The time taken by nag_robust_trimmed_1var (g07ddc) is proportional to \(n \).

10 **Example**

The following program finds the \(\alpha \)-trimmed mean and \(\alpha \)-Winsorized mean for a sample of 16 observations where \(\alpha = 0.15 \). The estimates of the variances of the above two means are also calculated.

10.1 **Program Text**

```c
/* nag_robust_trimmed_1var (g07ddc) Example Program. *
 * Copyright 2014 Numerical Algorithms Group. *
 * Mark 4, 1996. *
 * Mark 8 revised, 2004. *
 */
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagg07.h>
#define NMAX 1000
int main(void)
{
    /* Local variables */
    Integer exit_status = 0, i, k, n;
    NagError fail;
    double alpha, propn, *sx = 0, tmean, tvar, wmean, wvar, *x = 0;
    INIT_FAIL(fail);
    printf("nag_robust_trimmed_1var (g07ddc) Example Program Results\n\n");
    /* Skip heading in data file */
    #ifdef _WIN32
        scanf_s("%*[^\n] ");
    #else
        scanf("%[^\n] ");
    #endif
    #ifdef _WIN32
        scanf("%"NAG_IFMT", &n);
    #else
        scanf("%"NAG_IFMT", &n);
    #endif
    if (n >= 2)
    {
        if (!(x = NAG_ALLOC(NMAX, double)) ||
            !(sx = NAG_ALLOC(NMAX, double)))
        {
            printf("Allocation failure\n");
            exit_status = -1;
            goto END;
        }
```
else
{
 printf("Invalid n.\n");
 exit_status = 1;
 return exit_status;
}
for (i = 1; i <= n; ++i)
#ifdef _WIN32
 scanf_s("%lf ", &x[i - 1]);
#else
 scanf("%lf ", &x[i - 1]);
#endif
#ifdef _WIN32
 scanf_s("%lf ", &alpha);
#else
 scanf("%lf ", &alpha);
#endif
/* nag_robust_trimmed_1var (g07ddc).
 * Trimmed and winsorized mean of a sample with estimates of
 * the variances of the two means
 */
 nag_robust_trimmed_1var(n, x, alpha, &tmean, &wmean, &tvar, &wvar, &k, sx, &fail);
 if (fail.code != NE_NOERROR)
 {
 printf("Error from nag_robust_trimmed_1var (g07ddc).\n", fail.message);
 exit_status = 1;
 goto END;
 }
 propn = (double) k / n;
 propn = 100.0 - propn * 200.0;
 printf("Statistics from middle %6.2f\% of data\n", propn);
 printf(" Trimmed-mean = %11.4f\n", tmean);
 printf(" Variance of Trimmed-mean = %11.4f\n", tvar);
 printf(" Winsorized-mean = %11.4f\n", wmean);
 printf("Variance of Winsorized-mean = %11.4f\n", wvar);
END:
 NAG_FREE(x);
 NAG_FREE(sx);
 return exit_status;
}

10.2 Program Data

nag_robust_trimmed_1var (g07ddc) Example Program Data
16
26.0 12.0 9.0 2.0 5.0 6.0 8.0 14.0 7.0 3.0 1.0 11.0 10.0 4.0 17.0 21.0 0.15

10.3 Program Results

nag_robust_trimmed_1var (g07ddc) Example Program Results

Statistics from middle 75.00\% of data

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trimmed-mean</td>
<td>8.8333</td>
</tr>
<tr>
<td>Variance of Trimmed-mean</td>
<td>1.5434</td>
</tr>
<tr>
<td>Winsorized-mean</td>
<td>9.1250</td>
</tr>
<tr>
<td>Variance of Winsorized-mean</td>
<td>1.5381</td>
</tr>
</tbody>
</table>