nag_poisson_ci (g07abc) computes a confidence interval for the mean argument of the Poisson distribution.

**Specification**
```
#include <nag.h>
#include <nagg07.h>
void nag_poisson_ci (Integer n, double xmean, double clevel, double *tl, double *tu, NagError *fail)
```

**Description**
Given a random sample of size \( n \), denoted by \( x_1, x_2, \ldots, x_n \), from a Poisson distribution with probability function

\[
p(x) = e^{-\theta x} \frac{x^i}{x!}, \quad x = 0, 1, 2, \ldots
\]

the point estimate, \( \hat{\theta} \), for \( \theta \) is the sample mean, \( \bar{x} \).

Given \( n \) and \( \bar{x} \) this function computes a \( 100(1 - \alpha)\% \) confidence interval for the argument \( \theta \), denoted by \([\theta_l, \theta_u]\), where \( \alpha \) is in the interval \((0, 1)\).

The lower and upper confidence limits are estimated by the solutions to the equations

\[
e^{-n\theta} \sum_{x=0}^{\infty} \frac{(n\theta)^x}{x!} = \frac{\alpha}{2},
\]

\[
e^{-n\theta} \sum_{x=0}^{T} \frac{(n\theta)^x}{x!} = \frac{\alpha}{2},
\]

where \( T = \sum_{i=1}^{n} x_i = n\bar{x} \).

The relationship between the Poisson distribution and the \( \chi^2 \)-distribution (see page 112 of Hastings and Peacock (1975)) is used to derive the equations

\[
\theta_l = \frac{1}{2n} \chi^2_{2T,\alpha/2};
\]

\[
\theta_u = \frac{1}{2n} \chi^2_{2T+2,1-\alpha/2};
\]

where \( \chi^2_{\nu, p} \) is the deviate associated with the lower tail probability \( p \) of the \( \chi^2 \)-distribution with \( \nu \) degrees of freedom.

In turn the relationship between the \( \chi^2 \)-distribution and the gamma distribution (see page 70 of Hastings and Peacock (1975)) yields the following equivalent equations;
\[
\theta_l = \frac{1}{2n} \gamma_{T, 2\alpha/2}, \\
\theta_u = \frac{1}{2n} \gamma_{T+1.2; 1-\alpha/2},
\]

where \( \gamma_{\alpha, \beta} \) is the deviate associated with the lower tail probability, \( \delta \), of the gamma distribution with shape argument \( \alpha \) and scale argument \( \beta \). These deviates are computed using nag_deviates_gamma_dist (g01ffc).

4 References


5 Arguments

1: \( n \) – Integer
   
   \textit{Input}

   \textit{On entry:} \( n \), the sample size.

   \textit{Constraint:} \( n \geq 1 \).

2: \( xmean \) – double

   \textit{Input}

   \textit{On entry:} the sample mean, \( \bar{x} \).

   \textit{Constraint:} \( xmean \geq 0.0 \).

3: \( clevel \) – double

   \textit{Input}

   \textit{On entry:} the confidence level, \( (1 - \alpha) \), for two-sided interval estimate. For example \( clevel = 0.95 \) gives a 95\% confidence interval.

   \textit{Constraint:} \( 0.0 < clevel < 1.0 \).

4: \( tl \) – double *

   \textit{Output}

   \textit{On exit:} the lower limit, \( \theta_l \), of the confidence interval.

5: \( tu \) – double *

   \textit{Output}

   \textit{On exit:} the upper limit, \( \theta_u \), of the confidence interval.

6: \( fail \) – NagError *

   \textit{Input/Output}

   The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM

On entry, argument \( \langle \text{value} \rangle \) had an illegal value.
NE_CONVERGENCE
When using the relationship with the gamma distribution the series to calculate the gamma
probabilities has failed to converge.

NE_INT
On entry, \( n = \langle \text{value} \rangle \).
Constraint: \( n > 0 \).

NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.
An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

NE_REAL
On entry, \( clevel \leq 0.0 \) or \( clevel \geq 1.0 \): \( clevel = \langle \text{value} \rangle \).
On entry, \( xmean = \langle \text{value} \rangle \).
Constraint: \( xmean \geq 0.0 \).

7 Accuracy
For most cases the results should have a relative accuracy of \( \max(0.5e - 12, 50.0 \times \epsilon) \) where \( \epsilon \) is the
machine precision (see nag_machine_precision (X02AJC)). Thus on machines with sufficiently high
precision the results should be accurate to 12 significant digits. Some accuracy may be lost when \( \alpha/2 \) or
\( 1 - \alpha/2 \) is very close to 0.0, which will occur if \( clevel \) is very close to 1.0. This should not affect the
usual confidence intervals used.

8 Parallelism and Performance
Not applicable.

9 Further Comments
None.

10 Example
The following example reads in data showing the number of noxious weed seeds and the frequency with
which that number occurred in 98 subsamples of meadow grass. The data is taken from page 224 of
Snedecor and Cochran (1967). The sample mean is computed as the point estimate of the Poisson
argument \( \theta \). nag_poisson_ci (g07abc) is then called to compute both a 95% and a 99% confidence
interval for the argument \( \theta \).
10.1 Program Text

/* nag_poisson_ci (g07abc) Example Program.*/
* Copyright 2014 Numerical Algorithms Group.
*/
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg07.h>

int main(void)
{
    /* Scalars */
    double clevel, sum, tl, tu, xmean;
    Integer exit_status, i, ifreq, n, num;
    NagError fail;
    INIT_FAIL(fail);
    exit_status = 0;
    printf("nag_poisson_ci (g07abc) Example Program Results\n");
    /* Skip heading in data file */
    #ifdef _WIN32
    scanf_s("%*[\n] ");
    #else
    scanf("%*[\n] ");
    #endif
    /* Read in the number of Noxious Seeds in a sub sample and 
     * the frequency with which that number occurs.
     */
    /* Compute the sample mean */
    sum = 0.0;
    n = 0;
    #ifdef _WIN32
    while (scanf_s("%NAG_IFMT"NAG_IFMT"%*[\n] ", &num, &ifreq) != EOF)
    #else
    while (scanf("%NAG_IFMT"NAG_IFMT"%*[\n] ", &num, &ifreq) != EOF)
    #endif
    { sum += (double) num * (double) ifreq;
      n += ifreq;
    }
    xmean = sum / (double) n;
    printf("\n");
    printf("The point estimate of the Poisson parameter = %6.4f\n", xmean);
    for (i = 1; i <= 2; ++i)
    { if (i == 1)
        { clevel = 0.95;
          printf("\n");
          printf("95 percent Confidence Interval for the estimate\n");
        }
      else
        { clevel = 0.99;
          printf("99 percent Confidence Interval for the estimate\n");
        }
    } /* nag_poisson_ci (g07abc). */
* Computes confidence interval for the parameter of a
  * Poisson distribution
*/
nag_poisson_ci(n, xmean, clevel, &tl, &tu, &fail);
if (fail.code != NE_NOERROR)
{
    printf("Error from nag_poisson_ci (g07abc).\n",
           fail.message);
    exit_status = 1;
    goto END;
}
printf("( %6.4f , %6.4f )\n", tl, tu);
printf("\n");
END:
    return exit_status;
}

10.2 Program Data
nag_poisson_ci (g07abc) Example Program Data
0 3
  1 17
  2 26
  3 16
  4 18
  5 9
  6 3
  7 5
  8 0
  9 1
 10 0

10.3 Program Results
nag_poisson_ci (g07abc) Example Program Results

The point estimate of the Poisson parameter = 3.0204

95 percent Confidence Interval for the estimate
( 2.6861 , 3.3848 )

99 percent Confidence Interval for the estimate
( 2.5874 , 3.5027 )