NAG Library Function Document

nag_rand_field_1d_predef_setup (g05znc)

1 Purpose

nag_rand_field_1d_predef_setup (g05znc) performs the setup required in order to simulate stationary Gaussian random fields in one dimension, for a preset variogram, using the circulant embedding method. Specifically, the eigenvalues of the extended covariance matrix (or embedding matrix) are calculated, and their square roots output, for use by nag_rand_field_1d_generate (g05zpc), which simulates the random field.

2 Specification

```c
#include <nag.h>
#include <nagg05.h>

void nag_rand_field_1d_predef_setup (Integer ns, double xmin, double xmax, double var, Integer np, null const double params[], Nag_EmbedPad pad, Nag_EmbedScale corr, Integer *icount, double *eig[], NagError *fail)
```

3 Description

A one-dimensional random field \(Z(x) \) in \(\mathbb{R} \) is a function which is random at every point \(x \in \mathbb{R} \), so \(Z(x) \) is a random variable for each \(x \). The random field has a mean function \(\mu(x) = E[Z(x)] \) and a symmetric positive semidefinite covariance function \(C(x, y) = E[(Z(x) - \mu(x))(Z(y) - \mu(y))] \). \(Z(x) \) is a Gaussian random field if for any choice of \(n \in \mathbb{N} \) and \(x_1, \ldots, x_n \in \mathbb{R} \), the random vector \([Z(x_1), \ldots, Z(x_n)]^T \) follows a multivariate Normal distribution, which would have a mean vector \(\hat{\mu} \) with entries \(\hat{\mu}_i = \mu(x_i) \) and a covariance matrix \(\hat{C} \) with entries \(\hat{C}_{ij} = C(x_i, x_j) \). A Gaussian random field \(Z(x) \) is stationary if \(\mu(x) \) is constant for all \(x \in \mathbb{R} \) and \(C(x, y) = C(x + a, y + a) \) for all \(x, y, a \in \mathbb{R} \) and hence we can express the covariance function \(C(x, y) \) as a function \(\gamma \) of one variable: \(C(x, y) = \gamma(x - y) \). \(\gamma \) is known as a variogram (or more correctly, a semivariogram) and includes the multiplicative factor \(\sigma^2 \) representing the variance such that \(\gamma(0) = \sigma^2 \).

The functions nag_rand_field_1d_predef_setup (g05znc) and nag_rand_field_1d_generate (g05zpc) are used to simulate a one-dimensional stationary Gaussian random field, with mean function zero and variogram \(\gamma(x) \), over an interval \([x_{\text{min}}, x_{\text{max}}]\), using an equally spaced set of \(N \) points. The problem reduces to sampling a Normal random vector \(X \) of size \(N \), with mean vector zero and a symmetric Toeplitz covariance matrix \(A \). Since \(A \) is in general expensive to factorize, a technique known as the circulant embedding method is used. \(A \) is embedded into a larger, symmetric circulant matrix \(B \) of size \(M \geq 2(N-1) \), which can now be factorized as \(B = WAW^* = R^*R \), where \(W \) is the Fourier matrix (\(W^* \) is the complex conjugate of \(W \)), \(A \) is the diagonal matrix containing the eigenvalues of \(B \) and \(R = A^{1/2}W^* \). \(B \) is known as the embedding matrix. The eigenvalues can be calculated by performing a discrete Fourier transform of the first row (or column) of \(B \) and multiplying by \(M \), and so only the first row (or column) of \(B \) is needed – the whole matrix does not need to be formed.

As long as all of the values of \(A \) are non-negative (i.e., \(B \) is positive semidefinite), \(B \) is a covariance matrix for a random vector \(Y \), two samples of which can now be simulated from the real and imaginary parts of \(R^*(U + iV) \), where \(U \) and \(V \) have elements from the standard Normal distribution. Since \(R^*(U + iV) = W(A^{1/2}(U + iV)) \), this calculation can be done using a discrete Fourier transform of the vector \(A^{1/2}(U + iV) \). Two samples of the random vector \(X \) can now be recovered by taking the first \(N \) elements of each sample of \(Y \) – because the original covariance matrix \(A \) is embedded in \(B \), \(X \) will have the correct distribution.
If B is not positive semidefinite, larger embedding matrices B can be tried; however if the size of the matrix would have to be larger than \maxm, an approximation procedure is used. We write $\lambda = \lambda_+ + \lambda_-$, where λ_+ and λ_- contain the non-negative and negative eigenvalues of B respectively. Then B is replaced by ρB_+ where $B_+ = W \lambda_+ W^*$ and $\rho \in (0, 1]$ is a scaling factor. The error ϵ in approximating the distribution of the random field is given by

$$
\epsilon = \sqrt{(1 - \rho)^2 \text{trace} \lambda + \rho^2 \text{trace} \lambda_- \over M}.
$$

Three choices for ρ are available, and are determined by the input argument corr:

setting $\text{corr} = \text{Nag EmbedScaleTraces}$ sets

$$
\rho = {\text{trace} \lambda \over \text{trace} \lambda_+},
$$

setting $\text{corr} = \text{Nag EmbedScaleSqrtTraces}$ sets

$$
\rho = \sqrt{\text{trace} \lambda \over \text{trace} \lambda_+},
$$

setting $\text{corr} = \text{Nag EmbedScaleOne}$ sets $\rho = 1$.

nag_rand_field_1d_predef_setup (g05znc) finds a suitable positive semidefinite embedding matrix B and outputs its size, m, and the square roots of its eigenvalues in lam. If approximation is used, information regarding the accuracy of the approximation is output. Note that only the first row (or column) of B is actually formed and stored.

4 References

5 Arguments

1: ns – Integer

Input

On entry: the number of sample points to be generated in realizations of the random field.

$\text{Constraint:} \text{ns} \geq 1$.

2: xmin – double

Input

On entry: the lower bound for the interval over which the random field is to be simulated. Note that if $\text{cov} = \text{Nag VgmBrownian}$ (for simulating fractional Brownian motion), xmin is not referenced and the lower bound for the interval is set to zero.

Constraint: if $\text{cov} \neq \text{Nag VgmBrownian}$, $\text{xmin} < \text{xmax}$.

3: xmax – double

Input

On entry: the upper bound for the interval over which the random field is to be simulated. Note that if $\text{cov} = \text{Nag VgmBrownian}$ (for simulating fractional Brownian motion), the lower bound for the interval is set to zero and so xmax is required to be greater than zero.
Constraints:

if \(\text{cov} \neq \text{Nag_VgmBrownian} \), \(\text{xmin} < \text{xmax} \);
if \(\text{cov} = \text{Nag_VgmBrownian} \), \(\text{xmax} > 0.0 \).

4: \(\text{maxm} \) – Integer

On entry: the maximum size of the circulant matrix to use. For example, if the embedding matrix is to be allowed to double in size three times before the approximation procedure is used, then choose \(\text{maxm} = 2^{k+2} \) where \(k = 1 + \lceil \log_2 (\text{ns} - 1) \rceil \).

Suggested value: \(2^{k+2} \) where \(k = 1 + \lceil \log_2 (\text{ns} - 1) \rceil \)

Constraint: \(\text{maxm} \geq 2^k \), where \(k \) is the smallest integer satisfying \(2^k \geq 2(\text{ns} - 1) \).

5: \(\text{var} \) – double

On entry: the multiplicative factor \(\sigma^2 \) of the variogram \(\gamma(x) \).

Constraint: \(\text{var} \geq 0.0 \).

6: \(\text{cov} \) – Nag_Variogram

On entry: determines which of the preset variograms to use. The choices are given below. Note that \(x' = \frac{|x|}{\ell} \), where \(\ell \) is the correlation length and is a parameter for most of the variograms, and \(\sigma^2 \) is the variance specified by \(\text{var} \).

\(\text{cov} = \text{Nag_VgmSymmStab} \)
Symmetric stable variogram

\[\gamma(x) = \sigma^2 \exp(-\ell x^\nu), \]

where
\(\ell = \text{params}[0], \ell > 0, \)
\(\nu = \text{params}[1], 0 \leq \nu \leq 2. \)

\(\text{cov} = \text{Nag_VgmCauchy} \)
Cauchy variogram

\[\gamma(x) = \sigma^2 \left(1 + (x')^2\right)^{-\nu}, \]

where
\(\ell = \text{params}[0], \ell > 0, \)
\(\nu = \text{params}[1], \nu > 0. \)

\(\text{cov} = \text{Nag_VgmDifferential} \)
Differential variogram with compact support

\[\gamma(x) = \begin{cases} \sigma^2 \left(1 + 8x' + 25(x')^2 + 32(x')^3 \right)(1 - x')^8, & x' < 1, \\ 0, & x' \geq 1, \end{cases} \]

where
\(\ell = \text{params}[0], \ell > 0. \)

\(\text{cov} = \text{Nag_VgmExponential} \)
Exponential variogram

\[\gamma(x) = \sigma^2 \exp(-\ell x'), \]

where
\(\ell = \text{params}[0], \ell > 0. \)
\textbf{cov} = \texttt{Nag_VgmGauss}
Gaussian variogram
\[\gamma(x) = \sigma^2 \exp\left(-\left(x'\right)^2\right), \]
where
\[\ell = \texttt{params}[0], \; \ell > 0. \]

\textbf{cov} = \texttt{Nag_VgmNugget}
\textbf{cov} = \texttt{Nag_VgmNugget}
Nugget variogram
\[\gamma(x) = \begin{cases} \sigma^2, & \text{if } x = 0, \\ 0, & \text{if } x \neq 0. \end{cases} \]
No parameters need be set for this value of \textbf{cov}.

\textbf{cov} = \texttt{Nag_VgmSpherical}
\textbf{cov} = \texttt{Nag_VgmSpherical}
Spherical variogram
\[\gamma(x) = \begin{cases} \sigma^2 \left(1 - 1.5x' + 0.5(x')^3\right), & \text{if } x' < 1, \\ 0, & \text{if } x' \geq 1, \end{cases} \]
where
\[\ell = \texttt{params}[0], \; \ell > 0. \]

\textbf{cov} = \texttt{Nag_VgmBessel}
\textbf{cov} = \texttt{Nag_VgmBessel}
Bessel variogram
\[\gamma(x) = \sigma^2 \frac{2^\nu \Gamma(\nu + 1) J_\nu(x')}{(x')^\nu}, \]
where
\[J_\nu(\cdot) \] is the Bessel function of the first kind,
\[\ell = \texttt{params}[0], \; \ell > 0, \]
\[\nu = \texttt{params}[1], \; \nu \geq -0.5. \]

\textbf{cov} = \texttt{Nag_VgmHole}
\textbf{cov} = \texttt{Nag_VgmHole}
Hole effect variogram
\[\gamma(x) = \sigma^2 \sin(x'), \]
where
\[\ell = \texttt{params}[0], \; \ell > 0. \]

\textbf{cov} = \texttt{Nag_VgmWhittleMatern}
\textbf{cov} = \texttt{Nag_VgmWhittleMatern}
Whittle-Matérn variogram
\[\gamma(x) = \sigma^2 \frac{2^{1-\nu} (x')^\nu K_\nu(x')}{\Gamma(\nu)}, \]
where
\[K_\nu(\cdot) \] is the modified Bessel function of the second kind,
\[\ell = \texttt{params}[0], \; \ell > 0, \]
\[\nu = \texttt{params}[1], \; \nu > 0. \]
\textbf{cov} = \text{Nag_VgmContParam}

Continuously parameterised variogram with compact support

\[
\gamma(x) = \begin{cases}
\sigma^2 \frac{2^{1+\nu} K_\nu(x)}{\Gamma(\nu)} \left(1 + 8x'' + 25(x'')^2 + 32(x''^3) \right) (1 - x'')^\delta, & x'' < 1, \\
0, & x'' \geq 1,
\end{cases}
\]

where

\[x'' = \frac{\bar{x}}{s},\]

\[K_\nu(\cdot)\] is the modified Bessel function of the second kind,

\[\ell = \text{params}[0], \ell > 0,\]

\[s = \text{params}[1], s > 0 \text{ (second correlation length)},\]

\[\nu = \text{params}[2], \nu > 0.\]

\textbf{cov} = \text{Nag_VgmGenHyp}

Generalized hyperbolic distribution variogram

\[
\gamma(x) = \sigma^2 \left(\frac{\delta^2 + (x')^2}{\delta^2 K_\lambda(\kappa\delta)} \right) K_\lambda \left(\kappa \left(\delta^2 + (x')^2 \right) \right),
\]

where

\[K_\lambda(\cdot)\] is the modified Bessel function of the second kind,

\[\ell = \text{params}[0], \ell > 0,\]

\[\lambda = \text{params}[1], \text{ no constraint on } \lambda\]

\[\delta = \text{params}[2], \delta > 0,\]

\[\kappa = \text{params}[3], \kappa > 0.\]

\textbf{cov} = \text{Nag_VgmCosine}

Cosine variogram

\[
\gamma(x) = \sigma^2 \cos(x'),
\]

where

\[\ell = \text{params}[0], \ell > 0.\]

\textbf{cov} = \text{Nag_VgmBrownian}

Used for simulating fractional Brownian motion \(B^H(t)\). Fractional Brownian motion itself is not a stationary Gaussian random field, but its increments \(\tilde{X}(i) = B^H(t_i) - B^H(t_{i-1})\) can be simulated in the same way as a stationary random field. The variogram for the so-called ‘increment process’ is

\[
C(\tilde{X}(t_i), \tilde{X}(t_j)) = \tilde{\gamma}(x) = \frac{\delta^{2H}}{2} \left(\left| \frac{x}{\delta} - 1 \right|^{2H} + \left| \frac{x}{\delta} + 1 \right|^{2H} - 2 \left| \frac{x}{\delta} \right|^{2H} \right),
\]

where

\[x = t_j - t_i,\]

\[H = \text{params}[0], 0 < H < 1, \text{ } H \text{ is the Hurst parameter},\]

\[\delta = \text{params}[1], \delta > 0, \text{ normally } \delta = t_i - t_{i-1} \text{ is the (fixed) stepsize.}\]

We scale the increments to set \(\gamma(0) = 1\); let \(X(i) = \frac{\tilde{X}(i)}{\gamma^H}\), then

\[
C(X(t_i), X(t_j)) = \gamma(x) = \frac{1}{2} \left(\left| \frac{x}{\delta} - 1 \right|^{2H} + \left| \frac{x}{\delta} + 1 \right|^{2H} - 2 \left| \frac{x}{\delta} \right|^{2H} \right).
\]
The increments $X(i)$ can then be simulated using nag_rand_field_1d_generate (g05zpc), then multiplied by δ^H to obtain the original increments $\tilde{X}(i)$ for the fractional Brownian motion.

Constraint: $\text{cov} = \text{Nag_VgmSymmStab, Nag_VgmCauchy, Nag_VgmDifferential,}$

$\text{Nag_VgmExponential, Nag_VgmGauss, Nag_VgmNugget, Nag_VgmSpherical, Nag_VgmBessel,}$

$\text{Nag_VgmHole, Nag_VgmWhittleMatern, Nag_VgmContParam, Nag_VgmGenHyp,}$

$\text{Nag_VgmCosine or Nag_VgmBrownian.}$

7: **np** – Integer
Input
On entry: the number of parameters to be set. Different variograms need a different number of parameters.

- $\text{cov} = \text{Nag_VgmNugget}$
 - np must be set to 0.
- $\text{cov} = \text{Nag_VgmDifferential, Nag_VgmExponential, Nag_VgmGauss, Nag_VgmSpherical,}$
 - np must be set to 1.
- $\text{cov} = \text{Nag_VgmSymmStab, Nag_VgmCauchy, Nag_VgmBessel, Nag_VgmWhittleMatern or Nag_VgmBrownian}$
 - np must be set to 2.
- $\text{cov} = \text{Nag_VgmContParam}$
 - np must be set to 3.
- $\text{cov} = \text{Nag_VgmGenHyp}$
 - np must be set to 4.

8: **params[np]** – const double
Input
On entry: the parameters set for the variogram.

Constraint: see cov for a description of the individual parameter constraints.

9: **pad** – Nag_EmbedPad
Input
On entry: determines whether the embedding matrix is padded with zeros, or padded with values of the variogram. The choice of padding may affect how big the embedding matrix must be in order to be positive semidefinite.

- $\text{pad} = \text{Nag_EmbedPadZeros}$
 - The embedding matrix is padded with zeros.
- $\text{pad} = \text{Nag_EmbedPadValues}$
 - The embedding matrix is padded with values of the variogram.

Suggested value: $\text{pad} = \text{Nag_EmbedPadValues}$.

Constraint: $\text{pad} = \text{Nag_EmbedPadZeros or Nag_EmbedPadValues}$.

10: **corr** – Nag_EmbedScale
Input
On entry: determines which approximation to implement if required, as described in Section 3.

Suggested value: $\text{corr} = \text{Nag_EmbedScaleTraces}$.

Constraint: $\text{corr} = \text{Nag_EmbedScaleTraces, Nag_EmbedScaleSqrtTraces or Nag_EmbedScaleOne}$.

11: **lam[maxm]** – double
Output
On exit: contains the square roots of the eigenvalues of the embedding matrix.
12: \(\mathbf{x} \) – double

\textit{Output}

\textit{On exit:} the points at which values of the random field will be output.

13: \(m \) – Integer *

\textit{Output}

\textit{On exit:} the size of the embedding matrix.

14: \(\text{approx} \) – Integer *

\textit{Output}

\textit{On exit:} indicates whether approximation was used.

\(\text{approx} = 0 \)

No approximation was used.

\(\text{approx} = 1 \)

Approximation was used.

15: \(\rho \) – double *

\textit{Output}

\textit{On exit:} indicates the scaling of the covariance matrix. \(\rho = 1.0 \) unless approximation was used with \(\text{corr} = \text{NagEmbedScaleTraces} \) or \(\text{NagEmbedScaleSqrtTraces} \).

16: \(\text{iCount} \) – Integer *

\textit{Output}

\textit{On exit:} indicates the number of negative eigenvalues in the embedding matrix which have had to be set to zero.

17: \(\text{eig}[3] \) – double

\textit{Output}

\textit{On exit:} indicates information about the negative eigenvalues in the embedding matrix which have had to be set to zero. \(\text{eig}[0] \) contains the smallest eigenvalue, \(\text{eig}[1] \) contains the sum of the squares of the negative eigenvalues, and \(\text{eig}[2] \) contains the sum of the absolute values of the negative eigenvalues.

18: \(\text{fail} \) – NagError *

\textit{Input/Output}

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

\textbf{NE_ALLOC_FAIL}

Dynamic memory allocation failed.

See Section 3.2.1.2 in the Essential Introduction for further information.

\textbf{NE_BAD_PARAM}

On entry, argument \(\langle \text{value} \rangle \) had an illegal value.

\textbf{NE_ENUM_INT}

On entry, \(np = \langle \text{value} \rangle \).

Constraint: for \(\text{cov} = \langle \text{value} \rangle \), \(np = \langle \text{value} \rangle \).

\textbf{NE_ENUM_REAL_1}

On entry, \(\text{cov} = \text{Nag_VgmBrownian} \) and \(\text{xmax} = \langle \text{value} \rangle \).

Constraint: \(\text{xmax} > 0.0 \).

On entry, \(\text{params}[\langle \text{value} \rangle] = \langle \text{value} \rangle \).

Constraint: dependent on \(\text{cov} \).
NE_ENUM_REAL_2
 On entry, cov ≠ Nag_VgmBrownian, xmin = ⟨value⟩ and xmax = ⟨value⟩.
 Constraint: xmin < xmax.

NE_INT
 On entry, maxm = ⟨value⟩.
 Constraint: the minimum calculated value for maxm is ⟨value⟩.
 Where the minimum calculated value is given by \(2^k \), where \(k \) is the smallest integer satisfying \(2^k \geq 2(ns - 1) \).
 On entry, ns = ⟨value⟩.
 Constraint: ns ≥ 1.

NE_INTERNAL_ERROR
 An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.
 An unexpected error has been triggered by this function. Please contact NAG.
 See Section 3.6.6 in the Essential Introduction for further information.

NE_NO_LICENCE
 Your licence key may have expired or may not have been installed correctly.
 See Section 3.6.5 in the Essential Introduction for further information.

NE_REAL
 On entry, var = ⟨value⟩.
 Constraint: var ≥ 0.0.

7 Accuracy
If on exit approx = 1, see the comments in Section 3 regarding the quality of approximation; increase
the value of maxm to attempt to avoid approximation.

8 Parallelism and Performance
Not applicable.

9 Further Comments
None.

10 Example
This example calls nag_rand_field_1d_predef_setup (g05znc) to calculate the eigenvalues of the
embedding matrix for 8 sample points of a random field characterized by the symmetric stable variogram
(cov = Nag_VgmSymmStab).

10.1 Program Text
/* nag_rand_field_1d_predef_setup (g05znc) Example Program. */
/* Copyright 2014 Numerical Algorithms Group. */
/* Mark 24, 2013. */
#include <math.h>
#include <nag.h>
#include <stdlib.h>
```c
#include <nagg05.h>
#include <nagx04.h>

static void read_input_data(Nag_Variogram *cov, Integer *np, double *params,
                            double *var, double *xmin, double *xmax,
                            Integer *ns, Integer *maxm, Nag_EmbedScale *corr,
                            Nag_EmbedPad *pad);

static void display_results(Integer approx, Integer m, double rho,
                            double *eig, Integer icount, double *lam);

int main(void)
{
    Integer exit_status = 0;
    /* Scalars */
    double rho, var, xmax, xmin;
    Integer approx, icount, m, maxm, np, ns;
    /* Arrays */
    double eig[3], params[4], *lam = 0, *xx = 0;
    /* Nag types */
    Nag_Variogram cov;
    Nag_EmbedScale corr;
    Nag_EmbedPad pad;
    NagError fail;

    INIT_FAIL(fail);

    printf("nag_rand_field_1d_predef_setup (g05znc) Example Program Results\n\n");

    /* Get problem specifications from data file*/
    read_input_data(&cov, &np, params, &var, &xmin, &xmax, &ns, &maxm, &corr,
                    &pad);
    if (!(lam = NAG_ALLOC((maxm), double))||
        !(xx = NAG_ALLOC((ns), double)))
    {
        printf("Allocation failure\n");
        exit_status = -1;
        goto END;
    }

    /* Get square roots of the eigenvalues of the embedding matrix. These are
     * obtained from the setup for simulating one-dimensional random fields,
     * with a preset variogram, by the circulant embedding method using
     * nag_rand_field_1d_predef_setup (g05znc).
     */
    nag_rand_field_1d_predef_setup(ns, xmin, xmax, maxm, var, cov, np,
                                   params, pad, corr, lam, xx, &m, &approx,
                                   &rho, &icount, eig, &fail);
    if (fail.code != NE_NOERROR) {
        printf("Error from nag_rand_field_1d_predef_setup (g05znc).\n\n%s\n", fail.message);
        exit_status = 1;
        goto END;
    }

    /* Output results*/
    display_results(approx, m, rho, eig, icount, lam);
}

void read_input_data(Nag_Variogram *cov, Integer *np, double *params,
                     double *var, double *xmin, double *xmax, Integer *ns,
                     Integer *maxm, Nag_EmbedScale *corr, Nag_EmbedPad *pad)
{
    Integer j;
    char   nag_enum_arg[40];

    /* Read in covariance function name and convert to value using
     * nag_enum_name_to_value (x04nac).
     */
    #ifdef _WIN32
```
```c
scanf_s("%*[\n] %39s%*[\n]", nag_enum_arg, _countof(nag_enum_arg));
#else
    scanf("%*[\n] %39s%*[\n]", nag_enum_arg);
#endif

*cos = (Nag_Variogram) nag_enum_name_to_value(nag_enum_arg);

/* Read in parameters */
#if defined _WIN32
    scanf_s("%"NAG_IFMT "%*[\n]", np);
#else
    scanf("%"NAG_IFMT "%*[\n]", np);
#endif
    for (j=0; j<*np; j++)
        #ifdef _WIN32
            scanf_s("%lf", &params[j]);
        #else
            scanf("%lf", &params[j]);
        #endif
    #ifdef _WIN32
        scanf_s("%*[\n]");
    #else
        scanf("%*[\n]");
    #endif

    /* Read in variance of random field. */
    #ifdef _WIN32
        scanf_s("%lf%*[\n]", var);
    #else
        scanf("%lf%*[\n]", var);
    #endif
    /* Read in domain endpoints. */
    #ifdef _WIN32
        scanf_s("%lf %lf%*[\n]", xmin, xmax);
    #else
        scanf("%lf %lf%*[\n]", xmin, xmax);
    #endif
    /* Read in number of sample points. */
    #ifdef _WIN32
        scanf_s("%"NAG_IFMT "%*[\n]", ns);
    #else
        scanf("%"NAG_IFMT "%*[\n]", ns);
    #endif
    /* Read in maximum size of embedding matrix. */
    #ifdef _WIN32
        scanf_s("%"NAG_IFMT "%*[\n]", maxm);
    #else
        scanf("%"NAG_IFMT "%*[\n]", maxm);
    #endif
    /* Read name of scaling in case of approximation and convert to value. */
    #ifdef _WIN32
        scanf(" %39s%*[\n]", nag_enum_arg, _countof(nag_enum_arg));
    #else
        scanf(" %39s%*[\n]", nag_enum_arg);
    #endif
    *corr = (Nag_EmbedScale) nag_enum_name_to_value(nag_enum_arg);
    /* Read in choice of padding and convert name to value. */
    #ifdef _WIN32
        scanf_s(" %39s%*[\n]", nag_enum_arg, _countof(nag_enum_arg));
    #else
        scanf(" %39s%*[\n]", nag_enum_arg);
    #endif
    *pad = (Nag_EmbedPad) nag_enum_name_to_value(nag_enum_arg);
}

void display_results(Integer approx, Integer m, double rho, double *eig,
        Integer icount, double *lam) {
    Integer j;
    /* Display size of embedding matrix*/
    printf("\nSize of embedding matrix = "%NAG_IFMT\n\n", m);
    /* Display approximation information if approximation used*/
    if (approx==1) {
        printf("Approximation required\n\n");
    }
```
printf("rho = %10.5f\n", rho);
printf("eig = ");
for (j=0; j<3; j++)
printf("%10.5f ", eig[j]);
printf("\n\nicount = %"NAG_IFMT"\n", icount);
} else {
printf("Approximation not required\n");
}

/* Display square roots of the eigenvalues of the embedding matrix. */
printf("\nSquare roots of eigenvalues of embedding matrix:\n\n");
for (j=0; j<m; j++)
printf("%10.5f%s", lam[j], j%4==3?"\n":"";
printf("\n");

10.2 Program Data

nag_rand_field_1d_predef_setup (g05znc) Example Program Data

Nag_VgmSymmStab : cov
2 : np (2 parameters for Nag_VgmSymmStab)
0.1 1.2 : params (c and nu)
0.5 : var
-1 1 : xmin, xmax
8 : ns
64 : maxm
Nag_EmbedScaleOne : corr
Nag_EmbedPadValues : pad

10.3 Program Results

nag_rand_field_1d_predef_setup (g05znc) Example Program Results

Size of embedding matrix = 16
Approximation not required

Square roots of eigenvalues of embedding matrix:

0.74207 0.73932 0.73150 0.71991
0.70639 0.69304 0.68184 0.67442
0.67182 0.67442 0.68184 0.69304
0.70639 0.71991 0.73150 0.73932