NAG Library Function Document

nag_rand_cauchy (g05scc)

1 Purpose

nag_rand_cauchy (g05scc) generates a vector of pseudorandom numbers from a Cauchy distribution with median \(a\) and semi-interquartile range \(b\).

2 Specification

```c
#include <nag.h>
#include <nagg05.h>

void nag_rand_cauchy (Integer n, double xmed, double semiqr, Integer state[],
                    double x[], NagError *fail)
```

3 Description

The distribution has PDF (probability density function)

\[
f(x) = \frac{1}{\pi b \left(1 + \left(\frac{x-a}{b}\right)^2\right)}
\]

nag_rand_cauchy (g05scc) returns the value

\[a + b \frac{2y_1 - 1}{y_2}\]

where \(y_1\) and \(y_2\) are a pair of consecutive pseudorandom numbers from a uniform distribution over \((0, 1)\), such that

\[(2y_1 - 1)^2 + y_2^2 \leq 1.\]

One of the initialization functions nag_rand_init_repeatable (g05kfc) (for a repeatable sequence if computed sequentially) or nag_rand_init_nonrepeatable (g05kgc) (for a non-repeatable sequence) must be called prior to the first call to nag_rand_cauchy (g05scc).

4 References

5 Arguments

1: \textbf{n} – Integer

\textit{Input}

\textit{On entry:} \(n\), the number of pseudorandom numbers to be generated.

\textit{Constraint:} \(n \geq 0\).

2: \textbf{xmed} – double

\textit{Input}

\textit{On entry:} \(a\), the median of the distribution.
3: **semiqr** – double
 Input
 On entry: b, the semi-interquartile range of the distribution.
 Constraint: $\text{semiqr} \geq 0.0$.

4: **state[\text{dim}]** – Integer
 Communication Array
 Note: the dimension, \text{dim}, of this array is dictated by the requirements of associated functions that must have been previously called. This array MUST be the same array passed as argument **state** in the previous call to \text{nag_rand_init_repeateable (g05kfc)} or \text{nag_rand_init_nonrepeateable (g05kgc)}.
 On entry: contains information on the selected base generator and its current state.
 On exit: contains updated information on the state of the generator.

5: **x[n]** – double
 Output
 On exit: the n pseudorandom numbers from the specified Cauchy distribution.

6: **fail** – NagError *
 Input/Output
 The NAG error argument (see Section 3.6 in the Essential Introduction).

6 **Error Indicators and Warnings**

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM
On entry, argument \langle\text{value}\rangle had an illegal value.

NE_INT
On entry, $n = \langle\text{value}\rangle$.
Constraint: $n \geq 0$.

NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

NE_INVALID_STATE
On entry, **state** vector has been corrupted or not initialized.

NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

NE_REAL
On entry, $\text{semiqr} = \langle\text{value}\rangle$.
Constraint: $\text{semiqr} \geq 0.0$.

7 **Accuracy**
Not applicable.
8 Parallelism and Performance

nag_rand_cauchy (g05scc) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users’ Note for your implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example prints the first five pseudorandom real numbers from a Cauchy distribution with median 1.0 and semi-interquartile range 2.0, generated by a single call to nag_rand_cauchy (g05scc), after initialization by nag_rand_init_repeatable (g05kfc).

10.1 Program Text

/* nag_rand_cauchy (g05scc) Example Program. */
/* Copyright 2014 Numerical Algorithms Group. */
/* Mark 9, 2009. */
/* Pre-processor includes */
#include <stdio.h>
#include <math.h>
#include <nag.h>
#include <nagg05.h>

int main(void)
{

 /* Integer scalar and array declarations */
 Integer exit_status = 0;
 Integer i, lstate;
 Integer *state = 0;

 /* Nag structures */
 NagError fail;

 /* Double scalar and array declarations */
 double *x = 0;

 /* Set the distribution parameters */
 double xmed = 1.0e0;
 double semiqr = 2.0e0;

 /* Set the sample size */
 Integer n = 5;

 /* Choose the base generator */
 Nag_BaseRNG genid = Nag_Basic;
 Integer subid = 0;

 /* Set the seed */
 Integer seed[] = { 1762543 };
 Integer lseed = 1;

 /* Initialise the error structure */
 INIT_FAIL(fail);

 printf("nag_rand_cauchy (g05scc) Example Program Results\n\n");
/* Get the length of the state array */
lstate = -1;
nag_rand_init_repeatable(genid, subid, seed, lseed, state, &lstate, &fail);
if (fail.code != NE_NOERROR)
{
 printf("Error from nag_rand_init_repeatable (g05kfc).\n\n", fail.message);
 exit_status = 1;
 goto END;
}

/* Allocate arrays */
if (!(x = NAG_ALLOC(n, double)) || !(state = NAG_ALLOC(lstate, Integer)))
{
 printf("Allocation failure\n");
 exit_status = -1;
 goto END;
}

/* Initialise the generator to a repeatable sequence */
nag_rand_init_repeatable(genid, subid, seed, lseed, state, &lstate, &fail);
if (fail.code != NE_NOERROR)
{
 printf("Error from nag_rand_init_repeatable (g05kfc).\n\n", fail.message);
 exit_status = 1;
 goto END;
}

/* Generate the variates*/
nag_rand_cauchy(n, xmed, semiqr, state, x, &fail);
if (fail.code != NE_NOERROR)
{
 printf("Error from nag_rand_cauchy (g05scc).\n\n", fail.message);
 exit_status = 1;
 goto END;
}

/* Display the variates*/
for (i = 0; i < n; i++)
 printf("%10.4f\n", x[i]);

END:
NAG_FREE(x);
NAG_FREE(state);
return exit_status;

10.2 Program Data
None.

10.3 Program Results
nag_rand_cauchy (g05scc) Example Program Results

6.1229
2.2328
-2.2118
0.4118
0.9892