NAG Library Function Document

nag_mv_kmeans_cluster_analysis (g03efc)

1 **Purpose**

nag_mv_kmeans_cluster_analysis (g03efc) performs K-means cluster analysis.

2 **Specification**

```c
#include <nag.h>
#include <nagg03.h>

void nag_mv_kmeans_cluster_analysis (Integer n, Integer m, const double x[],
                                   Integer tdx, const Integer isx[],
                                   Integer nvar, Integer k,
                                   double cmeans[], Integer tdc,
                                   const double wt[], Integer inc[],
                                   Integer nic[], double css[], double csw[],
                                   Integer maxit,
                                   NagError *fail)
```

3 **Description**

Given n objects with p variables measured on each object, x_{ij} for $i = 1, 2, \ldots, n$ and $j = 1, 2, \ldots, p$, nag_mv_kmeans_cluster_analysis (g03efc) allocates each object to one of K groups or clusters to minimize the within-cluster sum of squares:

$$
\sum_{k=1}^{K} \sum_{i \in S_k} \sum_{j=1}^{p} (x_{ij} - \bar{x}_{kj})^2,
$$

where S_k is the set of objects in the kth cluster and \bar{x}_{kj} is the mean for the variable j over cluster k. This is often known as K-means clustering.

In addition to the data matrix, a K by p matrix giving the initial cluster centres for the K clusters is required. The objects are then initially allocated to the cluster with the nearest cluster mean. Given the initial allocation, the procedure is to iteratively search for the K-partition with locally optimal within-cluster sum of squares by moving points from one cluster to another.

Optionally, weights for each object, w_i, can be used so that the clustering is based on within-cluster weighted sums of squares:

$$
\sum_{k=1}^{K} \sum_{i \in S_k} \sum_{j=1}^{p} w_i (x_{ij} - \bar{x}_{kj})^2,
$$

where \bar{x}_{kj} is the weighted mean for variable j over cluster k.

The function is based on the algorithm of Hartigan and Wong (1979).

4 **References**

5 Arguments

1: \(n \) – Integer
 \(\text{Input} \)
 \(\text{On entry:} \) the number of observations, \(n \).
 \(\text{Constraint:} \ n \geq 2 \).

2: \(m \) – Integer
 \(\text{Input} \)
 \(\text{On entry:} \) the number of variables in the array \(x \).
 \(\text{Constraint:} \ m \geq nvar \).

3: \(x[n \times tdx] \) – const double
 \(\text{Input} \)
 \(\text{On entry:} \) \(x[(i - 1) \times tdx + j - 1] \) must contain the value of \(j \)th variable for the \(i \)th object, for \(i = 1, 2, \ldots, n \) and \(j = 1, 2, \ldots, m \).

4: \(tdx \) – Integer
 \(\text{Input} \)
 \(\text{On entry:} \) the stride separating matrix column elements in the array \(x \).
 \(\text{Constraint:} \ tdx \geq m \).

5: \(isx[m] \) – const Integer
 \(\text{Input} \)
 \(\text{On entry:} \) \(isx[j - 1] \) indicates whether or not the \(j \)th variable is to be included in the analysis.
 \(\text{If} \ isx[j - 1] > 0, \) then the \(j \)th variable contained in the \(j \)th column of \(x \) is included, for \(j = 1, 2, \ldots, m \).
 \(\text{Constraint:} \ isx[j - 1] > 0 \) for \(nvar \) values of \(j \).

6: \(nvar \) – Integer
 \(\text{Input} \)
 \(\text{On entry:} \) the number of variables included in the sum of squares calculations, \(p \).
 \(\text{Constraint:} \ 1 \leq nvar \leq m \).

7: \(k \) – Integer
 \(\text{Input} \)
 \(\text{On entry:} \) the number of clusters, \(K \).
 \(\text{Constraint:} \ k \geq 2 \).

8: \(cmeans[k \times tdc] \) – double
 \(\text{Input/Output} \)
 \(\text{On entry:} \) \(cmeans[(i - 1) \times tdc + j - 1] \) must contain the value of the \(j \)th variable for the \(i \)th initial cluster centre, for \(i = 1, 2, \ldots, K \) and \(j = 1, 2, \ldots, p \).
 \(\text{On exit:} \) \(cmeans[(i - 1) \times tdc + j - 1] \) contains the value of the \(j \)th variable for the \(i \)th computed cluster centre, for \(i = 1, 2, \ldots, K \) and \(j = 1, 2, \ldots, p \).

9: \(tdc \) – Integer
 \(\text{Input} \)
 \(\text{On entry:} \) the stride separating matrix column elements in the array \(cmeans \).
 \(\text{Constraint:} \ tdc \geq nvar \).

10: \(wt[n] \) – const double
 \(\text{Input} \)
 \(\text{On entry:} \) the elements of \(wt \) must contain the weights to be used in the analysis. The effective number of observations is the sum of the weights. If \(wt[i - 1] = 0.0 \) then the \(i \)th observation is not included in the analysis.
 \(\text{If weights are not provided then} \) \(wt \) \(\text{must be set to} \) \text{NULL} \(\text{and the effective number of observations is} \) \(n \).
Constraints:
\[
wt[i - 1] \geq 0.0, \text{ for } i = 1, 2, \ldots, n;
\]
\[
wt[i - 1] > 0.0 \text{ for at least two values of } i.
\]

11: \textbf{inc} - Integer\hspace{1cm} \textit{Output}

On exit: \textbf{inc}[i - 1] contains the cluster to which the \(i\)th object has been allocated, for \(i = 1, 2, \ldots, n\).

12: \textbf{nic} - Integer\hspace{1cm} \textit{Output}

On exit: \textbf{nic}[i - 1] contains the number of objects in the \(i\)th cluster, for \(i = 1, 2, \ldots, K\).

13: \textbf{css} - double\hspace{1cm} \textit{Output}

On exit: \textbf{css}[i - 1] contains the within-cluster (weighted) sum of squares of the \(i\)th cluster, for \(i = 1, 2, \ldots, K\).

14: \textbf{csw} - double\hspace{1cm} \textit{Output}

On exit: \textbf{csw}[i - 1] contains the within-cluster sum of weights of the \(i\)th cluster, for \(i = 1, 2, \ldots, K\). If \(wt = \text{NULL}\) the sum of weights is the number of objects in the cluster.

15: \textbf{maxit} - Integer\hspace{1cm} \textit{Input}

On entry: the maximum number of iterations allowed in the analysis.

\textit{Suggested value: } \textbf{maxit} = 10.

\textit{Constraint: } \textbf{maxit} > 0.

16: \textbf{fail} - NagError*\hspace{1cm} \textit{Input/Output}

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 \textbf{Error Indicators and Warnings}

NE_2_INT_ARG_LT

On entry, \(m = \langle \text{value} \rangle\) while \(nvar = \langle \text{value} \rangle\). These arguments must satisfy \(m \geq nvar\).

On entry, \(tdc = \langle \text{value} \rangle\) while \(nvar = \langle \text{value} \rangle\). These arguments must satisfy \(tdc \geq nvar\).

On entry, \(tdx = \langle \text{value} \rangle\) while \(m = \langle \text{value} \rangle\). These arguments must satisfy \(tdx \geq m\).

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_CLUSTER_EMPTY

At least one cluster is empty after the initial assignment.

Try a different set of initial cluster centres in \textbf{cmeans} and also consider decreasing the value of \(k\). The empty clusters may be found by examining the values in \textbf{nic}.

NE_INT_ARG_LE

On entry, \(\textbf{maxit} = \langle \text{value} \rangle\).

\textit{Constraint: } \textbf{maxit} > 0.

NE_INT_ARG_LT

On entry, \(k = \langle \text{value} \rangle\).

\textit{Constraint: } k \geq 2.
On entry, \(n = \langle \text{value} \rangle \).
Constraint: \(n \geq 2 \).

On entry, \(nvar = \langle \text{value} \rangle \).
Constraint: \(nvar \geq 1 \).

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

NE_NEG_WEIGHT_ELEMENT

On entry, \(wt[\langle \text{value} \rangle] = \langle \text{value} \rangle \).
Constraint: When referenced, all elements of \(wt \) must be non-negative.

NE_TOO_MANY

Too many iterations (\(\langle \text{value} \rangle \)). Convergence has not been achieved within the maximum number of iterations given by \(\text{maxit} \). Try increasing \(\text{maxit} \) and, if possible, use the returned values in \(\text{cmeans} \) as the initial cluster centres.

NE_VAR_INCL_INDICATED

The number of variables, \(nvar \) in the analysis \(= \langle \text{value} \rangle \), while number of variables included in the analysis via array \(\text{isx} = \langle \text{value} \rangle \).
Constraint: these two numbers must be the same.

NE_WT_ZERO

At least two elements of \(wt \) must be greater than zero.

7 Accuracy

\(\text{nag_mv_kmeans_cluster_analysis (g03efc)} \) produces clusters that are locally optimal; the within-cluster sum of squares may not be decreased by transferring a point from one cluster to another, but different partitions may have the same or smaller within-cluster sum of squares.

8 Parallelism and Performance

Not applicable.

9 Further Comments

The time per iteration is approximately proportional to \(npK \).

10 Example

The data consists of observations of five variables on twenty soils (Kendall and Stuart (1976)). The data is read in, the \(K \)-means clustering performed and the results printed.

10.1 Program Text

/* \text{nag_mv_kmeans_cluster_analysis (g03efc)} Example Program. */
/* Copyright 2014 Numerical Algorithms Group. */
/* Mark 5, 1998. */
/* Mark 7, revised, 2001. */
/* Mark 8 revised, 2004. */
*/
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagg03.h>
#define CMEANS(I, J) cmeans[(I) *tdcmeans + J]
#define X(I, J) x[(I) *tdx + J]
int main(void)
{
 Integer exit_status = 0, i, *inc = 0, *isx = 0, j, k, m, maxit, n, *nic = 0,
 nvar;
 Integer tdcmeans, tdx;
 NagError fail;
 char weight[2];
 double *cmeans = 0, *css = 0, *csw = 0, *wt = 0, *wtptr, *x = 0;

 INIT_FAIL(fail);
 printf("nag_mv_kmeans_cluster_analysis (g03efc) Example Program Results"
 "\n\n") ;
 /* Skip heading in the data file */
 #ifdef _WIN32
 scanf_s("%*[^\n]");
 #else
 scanf("%*[^\n]");
 #endif
 #ifdef _WIN32
 scanf_s("%1s", weight, _countof(weight));
 #else
 scanf("%1s", weight);
 #endif
 #ifdef _WIN32
 scanf_s("%"NAG_IFMT"", &n);
 #else
 scanf("%"NAG_IFMT"", &n);
 #endif
 #ifdef _WIN32
 scanf_s("%"NAG_IFMT"", &m);
 #else
 scanf("%"NAG_IFMT"", &m);
 #endif
 #ifdef _WIN32
 scanf_s("%"NAG_IFMT"", &nvar);
 #else
 scanf("%"NAG_IFMT"", &nvar);
 #endif
 #ifdef _WIN32
 scanf_s("%"NAG_IFMT"", &k);
 #else
 scanf("%"NAG_IFMT"", &k);
 #endif
 #ifdef _WIN32
 scanf_s("%"NAG_IFMT"", &maxit);
 #else
 scanf("%"NAG_IFMT"", &maxit);
 #endif
 if (n >= 2 && nvar >= 1 && m >= nvar && k >= 2)
 {
 if (!cmeans = NAG_ALLOC((k)*(nvar), double)) ||
 (!css = NAG_ALLOC(k, double)) ||
 (!csw = NAG_ALLOC(k, double)) ||
 (!wt = NAG_ALLOC(n, double)) ||
 (!x = NAG_ALLOC((n)*(m), double)) ||
 (!inc = NAG_ALLOC(n, Integer)) ||
 (!isx = NAG_ALLOC(m, Integer)) ||
 (!nic = NAG_ALLOC(k, Integer)))
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
tdx = m;
tdcmeans = nvar;
else
{
printf("Invalid n or nvar or m or k.\n");
exit_status = 1;
return exit_status;
}
if (*weight == 'W')
{
for (i = 0; i < n; ++i)
{
for (j = 0; j < m; ++j)
#ifdef _WIN32
 scanf_s("%lf", &X(i, j));
#else
 scanf("%lf", &X(i, j));
#endif
#ifdef _WIN32
 scanf_s("%lf", &wt[i]);
#else
 scanf("%lf", &wt[i]);
#endif
 wtptr = wt;
}
else
{
for (i = 0; i < n; ++i)
{
for (j = 0; j < m; ++j)
#ifdef _WIN32
 scanf_s("%lf", &X(i, j));
#else
 scanf("%lf", &X(i, j));
#endif
 wtptr = 0;
}
for (i = 0; i < k; ++i)
{
for (j = 0; j < nvar; ++j)
#ifdef _WIN32
 scanf_s("%lf", &CMEANS(i, j));
#else
 scanf("%lf", &CMEANS(i, j));
#endif
#ifdef _WIN32
 scanf_s("%NAG_IFMT", &isx[j]);
#else
 scanf("%NAG_IFMT", &isx[j]);
#endif
/* nag_mv_kmeans_cluster_analysis (g03efc).
 * K-means
*/
gag_mv_kmeans_cluster_analysis(n, m, x, tdx, isx, nvar, k, cmeans, tdcmeans, wtptr, inc, nic, css, csw, maxit, &fail);
if (fail.code != NE_NOERROR)
{
printf("Error from nag_mv_kmeans_cluster_analysis (g03efc).\n\n",

fail.message);
 exit_status = 1;
 goto END;
}

printf("\nThe cluster each point belongs to\n");
for (i = 0; i < n; ++i)
 printf(" %6"NAG_IFMT"\n", inc[i], (i+1)%10?"":"");

printf("\n\nThe number of points in each cluster\n");
for (i = 0; i < k; ++i)
 printf(" %6"NAG_IFMT", nic[i]);

printf("\n\nThe within-cluster sum of weights of each cluster\n");
for (i = 0; i < k; ++i)
 printf(" %9.2f", csw[i]);

printf("\n\nThe within-cluster sum of squares of each cluster\n\n");
for (i = 0; i < k; ++i)
 printf(" %13.4f", css[i]);

printf("\n\nThe final cluster centres\n");
printf(" 1 2 3 4 5\n");
for (i = 0; i < k; ++i)
{
 printf(" %5"NAG_IFMT" ", i+1);
 for (j = 0; j < nvar; ++j)
 printf("%8.4f", CMEANS(i, j));
 printf("\n");
}
END:
 NAG_FREE(cmeans);
 NAG_FREE(css);
 NAG_FREE(csw);
 NAG_FREE(wt);
 NAG_FREE(x);
 NAG_FREE(inc);
 NAG_FREE(isx);
 NAG_FREE(nic);
 return exit_status;
}

10.2 Program Data

nag_mv_kmeans_cluster_analysis (g03efc) Example Program Data

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>77.3 13.0 9.7 1.5 6.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82.5 10.0 7.5 1.5 6.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66.9 20.6 12.5 2.3 7.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47.2 33.8 19.0 2.8 5.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.3 20.5 14.2 1.9 6.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>83.3 10.0 6.7 2.2 7.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81.6 12.7 5.7 2.9 6.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47.8 36.5 15.7 2.3 7.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48.6 37.1 14.3 2.1 7.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61.6 25.5 12.9 1.9 7.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58.6 26.5 14.9 2.4 6.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69.3 22.3 8.4 4.0 7.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61.8 30.8 7.4 2.7 6.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67.7 25.3 7.0 4.8 7.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57.2 31.2 11.6 2.4 6.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67.2 22.7 10.1 3.3 6.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59.2 31.2 9.6 2.4 6.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80.2 13.2 6.6 2.0 5.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82.2 11.1 6.7 2.2 7.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69.7 20.7 9.6 3.1 5.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1111

10.3 Program Results

nag_mv_kmeans_cluster_analysis (g03efc) Example Program Results

The cluster each point belongs to

<table>
<thead>
<tr>
<th>1</th>
<th>1</th>
<th>3</th>
<th>2</th>
<th>3</th>
<th>1</th>
<th>1</th>
<th>2</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

The number of points in each cluster

6 3 11

The within-cluster sum of weights of each cluster

6.00 3.00 11.00

The within-cluster sum of squares of each cluster

46.5717 20.3800 468.8964

The final cluster centres

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>81.1833 11.6667 7.1500 2.0500 6.6000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>47.8667 35.8000 16.3333 2.4000 6.7333</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>64.0455 25.2091 10.7455 2.8364 6.6545</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>