NAG Library Function Document

nag_mv_canon_var (g03acc)

1 Purpose

nag_mv_canon_var (g03acc) performs a canonical variate (canonical discrimination) analysis.

2 Specification

```c
#include <nag.h>
#include <nagg03.h>

void nag_mv_canon_var (Nag_Weightstype weight, Integer n, Integer m,
const double x[], Integer tdx, const Integer isx[], Integer nx,
const Integer ing[], Integer ng, const double wt[], Integer nig[],
double cvm[], Integer tdcvm, double e[], Integer tde, Integer *ncv,
double cvx[], Integer tdcvx, double tol, Integer *irankx,
NagError *fail)
```

3 Description

Let a sample of \(n \) observations on \(n_x\) variables in a data matrix come from \(n_g\) groups with \(n_1, n_2, \ldots, n_{n_g}\) observations in each group, \(\sum n_i = n\). Canonical variate analysis finds the linear combination of the \(n_x\) variables that maximizes the ratio of between-group to within-group variation. The variables formed, the canonical variates can then be used to discriminate between groups.

The canonical variates can be calculated from the eigenvectors of the within-group sums of squares and cross-products matrix. However, nag_mv_canon_var (g03acc) calculates the canonical variates by means of a singular value decomposition (SVD) of a matrix \(V\). Let the data matrix with variable (column) means subtracted be \(X\), and let its rank be \(k\); then the \(k\) by \((n_g - 1)\) matrix \(V\) is given by:

\[
V = Q_X Q_g
\]

where \(Q_g\) is an \(n\) by \((n_g - 1)\) orthogonal matrix that defines the groups and \(Q_X\) is the first \(k\) rows of the orthogonal matrix \(Q\) either from the QR decomposition of \(X\):

\[
X = QR
\]

if \(X\) is of full column rank, i.e., \(k = n_x\), else from the SVD of \(X\):

\[
X = QDP^T
\]

Let the SVD of \(V\) be:

\[
V = U \Delta U_g^T
\]

then the nonzero elements of the diagonal matrix \(\Delta, \delta_i\), for \(i = 1, 2, \ldots, l\), are the \(l\) canonical correlations associated with the \(l\) canonical variates, where \(l = \min(k, n_g)\).

The eigenvalues, \(\lambda_i^2\), of the within-group sums of squares matrix are given by:

\[
\lambda_i^2 = \frac{\delta_i^2}{1 - \delta_i^2}
\]

and the value of \(\pi_i = \lambda_i^2 / \sum \lambda_j^2\) gives the proportion of variation explained by the \(i\)th canonical variate. The values of the \(\pi_i\)’s give an indication as to how many canonical variates are needed to adequately describe the data, i.e., the dimensionality of the problem.

To test for a significant dimensionality greater than \(i\) the \(\chi^2\) statistic:

\[
\left(n - 1 - n_g - \frac{1}{2}(k - n_g) \right) \sum_{j=i+1}^{l} \log \left(1 + \lambda_j^2 \right)
\]
can be used. This is asymptotically distributed as a χ^2 distribution with $(k - i)(n_g - 1 - i)$ degrees of freedom. If the test for $i = h$ is not significant, then the remaining tests for $i > h$ should be ignored.

The loadings for the canonical variates are calculated from the matrix U_x. This matrix is scaled so that the canonical variates have unit within group variance.

In addition to the canonical variates loadings the means for each canonical variate are calculated for each group.

Weights can be used with the analysis, in which case the weighted means are subtracted from each column and then each row is scaled by an amount $\sqrt{w_i}$, where w_i is the weight for the ith observation (row).

4 References

5 Arguments
1: weight – Nag_Weightstype
 Input

 On entry: indicates the type of weights to be used in the analysis.

 weight = Nag_NoWeights
 No weights are used.

 weight = Nag_Weightsfreq
 The weights are treated as frequencies and the effective number of observations is the sum of the weights.

 weight = Nag_Weightsvar
 The weights are treated as being inversely proportional to the variance of the observations and the effective number of observations is the number of observations with nonzero weights.

 Constraint: weight = Nag_NoWeights, Nag_Weightsfreq or Nag_Weightsvar.

2: n – Integer
 Input

 On entry: the number of observations, n.

 Constraint: $n \geq nx + ng$.

3: m – Integer
 Input

 On entry: the total number of variables, m.

 Constraint: $m \geq nx$.

4: $x[n \times tdx]$ – const double
 Input

 On entry: $x[(i - 1) \times tdx + j - 1]$ must contain the ith observation for the jth variable, for $i = 1, 2, \ldots, n$ and $j = 1, 2, \ldots, m$.

5: tdx – Integer
 Input

 On entry: the stride separating matrix column elements in the array x.

 Constraint: $tdx \geq m$.
6: \(\text{isx[m]} \) – const Integer

Input

On entry: \(\text{isx[j - 1]} \) indicates whether or not the \(j \)th variable is to be included in the analysis.

If \(\text{isx[j - 1]} > 0 \), then the variable contained in the \(j \)th column of \(x \) is included in the canonical variate analysis, for \(j = 1, 2, \ldots, m \).

Constraint: \(\text{isx[j - 1]} > 0 \) for \(nx \) values of \(j \).

7: \(nx \) – Integer

Input

On entry: the number of variables in the analysis, \(n_x \).

Constraint: \(nx \geq 1 \).

8: \(\text{ing[n]} \) – const Integer

Input

On entry: \(\text{ing[i - 1]} \) indicates which group the \(i \)th observation is in, for \(i = 1, 2, \ldots, n \). The effective number of groups is the number of groups with nonzero membership.

Constraint: \(1 \leq \text{ing[i - 1]} \leq ng \), for \(i = 1, 2, \ldots, n \).

9: \(ng \) – Integer

Input

On entry: the number of groups, \(n_g \).

Constraint: \(ng \geq 2 \).

10: \(wt[n] \) – const double

Input

On entry: if \(\text{weight} = \text{Nag}_\text{Weightsfreq} \) or \(\text{Nag}_\text{Weightsvar} \) then the elements of \(wt \) must contain the weights to be used in the analysis.

If \(wt[i - 1] = 0.0 \) then the \(i \)th observation is not included in the analysis.

Constraints:

\[
\sum_{i=1}^{n} wt[i - 1] \geq nx + \text{effective number of groups}.
\]

Note: if \(\text{weight} = \text{Nag}_\text{NoWeights} \) then \(wt \) is not referenced and may be NULL.

11: \(\text{nig[ng]} \) – Integer

Output

On exit: \(\text{nig[j - 1]} \) gives the number of observations in group \(j \), for \(j = 1, 2, \ldots, n_g \).

12: \(\text{cvm[ng x tdcvm]} \) – double

Output

On exit: \(\text{cvm[(i - 1) x tdcvm + j - 1]} \) contains the mean of the \(j \)th canonical variate for the \(i \)th group, for \(i = 1, 2, \ldots, n_g \) and \(j = 1, 2, \ldots, t \); the remaining columns, if any, are used as workspace.

13: \(tdcvm \) – Integer

Input

On entry: the stride separating matrix column elements in the array \(\text{cvm} \).

Constraint: \(tdcvm \geq nx \).

14: \(\text{e}[\min(nx, ng - 1) x tde] \) – double

Output

On exit: the statistics of the canonical variate analysis. \(\text{e}[(i - 1) x tde] \), the canonical correlations, \(\delta_i \), for \(i = 1, 2, \ldots, t \).

\(\text{e}[(i - 1) x tde + 1] \), the eigenvalues of the within-group sum of squares matrix, \(\lambda_i^2 \), for \(i = 1, 2, \ldots, t \).

\(\text{e}[(i - 1) x tde + 2] \), the proportion of variation explained by the \(i \)th canonical variate, for \(i = 1, 2, \ldots, t \).
e[(i - 1) × tde + 3], the χ² statistic for the ith canonical variate, for \(i = 1, 2, \ldots, l \).

e[(i - 1) × tde + 4], the degrees of freedom for χ² statistic for the ith canonical variate, for \(i = 1, 2, \ldots, l \).

e[(i - 1) × tde + 5], the significance level for the χ² statistic for the ith canonical variate, for \(i = 1, 2, \ldots, l \).

15: \(tde \) – Integer \hspace{1cm} Input

On entry: the stride separating matrix column elements in the array \(e \).

Constraint: \(tde \geq 6 \).

16: \(ncv \) – Integer * \hspace{1cm} Output

On exit: the number of canonical variates, \(l \). This will be the minimum of \(n_g - 1 \) and the rank of \(x \).

17: \(\text{cvx}[nx \times tdcvx] \) – double \hspace{1cm} Output

On exit: the canonical variate loadings. \(\text{cvx}[(i - 1) \times tdcvx + j - 1] \) contains the loading coefficient for the ith variable on the jth canonical variate, for \(i = 1, 2, \ldots, n_x \) and \(j = 1, 2, \ldots, l \); the remaining columns, if any, are used as workspace.

18: \(tdcvx \) – Integer \hspace{1cm} Input

On entry: the stride separating matrix column elements in the array \(\text{cvx} \).

Constraint: \(tdcvx \geq ng - 1 \).

19: \(\text{tol} \) – double \hspace{1cm} Input

On entry: the value of \(\text{tol} \) is used to decide if the variables are of full rank and, if not, what is the rank of the variables. The smaller the value of \(\text{tol} \) the stricter the criterion for selecting the singular value decomposition. If a non-negative value of \(\text{tol} \) less than machine precision is entered, then the square root of machine precision is used instead.

Constraint: \(\text{tol} \geq 0.0 \).

20: \(\text{irankx} \) – Integer * \hspace{1cm} Output

On exit: the rank of the dependent variables.

If the variables are of full rank then \(\text{irankx} = nx \).

If the variables are not of full rank then \(\text{irankx} \) is an estimate of the rank of the dependent variables. \(\text{irankx} \) is calculated as the number of singular values greater than \(\text{tol} \times (\text{largest singular value}) \).

21: \(\text{fail} \) – NagError * \hspace{1cm} Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_2_INT_ARG_LT

On entry, \(m = \langle \text{value} \rangle \) while \(nx = \langle \text{value} \rangle \). These arguments must satisfy \(m \geq nx \).

On entry, \(tdcvx = \langle \text{value} \rangle \) while \(ng = \langle \text{value} \rangle \). These arguments must satisfy \(tdcvx \geq ng - 1 \).

On entry, \(tdx = \langle \text{value} \rangle \) while \(m = \langle \text{value} \rangle \). These arguments must satisfy \(tdx \geq m \).
On entry, \(n = \langle \text{value} \rangle \), \(nx = \langle \text{value} \rangle \) and \(ng = \langle \text{value} \rangle \). These arguments must satisfy \(n \geq nx + ng \).

Dynamic memory allocation failed.

On entry, argument \(\text{weight} \) had an illegal value.

A canonical correlation is equal to one. This will happen if the variables provide an exact indication as to which group every observation is allocated.

Either the effective number of groups is less than two or the effective number of groups plus the number of variables, \(nx \) is greater than the effective number of observations.

On entry, \(ng = \langle \text{value} \rangle \). Constraint: \(ng \geq 2 \).

On entry, \(nx = \langle \text{value} \rangle \). Constraint: \(nx \geq 1 \).

On entry, \(tde = \langle \text{value} \rangle \). Constraint: \(tde \geq 6 \).

On entry, \(\text{ing}[\langle \text{value} \rangle] = \langle \text{value} \rangle \), \(ng = \langle \text{value} \rangle \). Constraint: \(1 \leq \text{ing}[i-1] \leq ng \), for \(i = 1, 2, \ldots, n \).

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

On entry, \(\text{wt}[\langle \text{value} \rangle] = \langle \text{value} \rangle \). Constraint: When referenced, all elements of \(\text{wt} \) must be non-negative.

The rank of the variables is zero. This will happen if all the variables are constants.

On entry, \(\text{tol} \) must not be less than 0.0: \(\text{tol} = \langle \text{value} \rangle \).

The singular value decomposition has failed to converge. This is an unlikely error exit.

The number of variables, \(nx \) in the analysis = \(\langle \text{value} \rangle \), while number of variables included in the analysis via array \(\text{isx} = \langle \text{value} \rangle \). Constraint: these two numbers must be the same.
NE_WT_ARGS

The `wt` array argument must not be `NULL` when the `weight` argument indicates weights.

7 Accuracy

As the computation involves the use of orthogonal matrices and a singular value decomposition rather than the traditional computing of a sum of squares matrix and the use of an eigenvalue decomposition, `nag_mv_canon_var (g03acc)` should be less affected by ill conditioned problems.

8 Parallelism and Performance

Not applicable.

9 Further Comments

None.

10 Example

A sample of nine observations, each consisting of three variables plus group indicator, is read in. There are three groups. An unweighted canonical variate analysis is performed and the results printed.

10.1 Program Text

```c
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagg03.h>

#define X(I, J) x[(I) *tdx + J]
#define E(I, J) e[(I) *tde + J]
#define CVM(I, J) cvm[(I) *tdcvm + J]
#define CVX(I, J) cvx[(I) *tdcvx + J]

int main(void)
{
    Integer exit_status = 0, i, irx, j, m, n, ncv, ng;
    Integer nx, tdcvm, tdcvx, tde, tdx;
    Integer *ing = 0, *isx = 0, *nig = 0;
    double *cvm = 0, *cvx = 0, *e = 0, tol, *wt = 0, *x = 0;
    char nag_enum_arg[40];
    Nag_Weightstype weight;
    NagError fail;

    INIT_FAIL(fail);
    printf("nag_mv_canon_var (g03acc) Example Program Results

    /* Skip heading in data file */
    #ifdef _WIN32
    scanf_s("%*[\n]");
    #else
    scanf("%*[\n]");
    #endif
    printf("\n\n")

    /* Main program */
    fail = nag_mv_canon_var(n, m, tdx, x,
                           &irx, &isx, &nig,
                           &nx, &tcv, &cvm,
                           &ncv, &ng,
                           &weight, &tol,
                           &wt,
                           &fail);
    if (fail != NagErrorNone)
    {
        NagPrintError(fail);
        exit_status = 1;
        return;
    }
    else
    {
        printf("\n\n")
        for (i = 1; i <= ncv; i++)
        {
            printf("%d %d %d %d %d %d %d %d %d
", i, x[i], x[i], x[i], x[i], x[i], x[i], x[i], x[i]);
            printf("\n")
        }
        printf("\n")
        return;
    }
}
```

11 References

This example program demonstrates the use of `nag_mv_canon_var (g03acc)` for canonical variate analysis.
ifdef _WIN32
 scanf_s("%"NAG_IFMT", &n);
#else
 scanf("%"NAG_IFMT", &n);
#endif
ifdef _WIN32
 scanf_s("%"NAG_IFMT", &m);
#else
 scanf("%"NAG_IFMT", &m);
#endif
ifdef _WIN32
 scanf_s("%"NAG_IFMT", &nx);
#else
 scanf("%"NAG_IFMT", &nx);
#endif
ifdef _WIN32
 scanf_s("%"NAG_IFMT", &ng);
#else
 scanf("%"NAG_IFMT", &ng);
#endif
ifdef _WIN32
 scanf_s("%39s", nag_enum_arg, _countof(nag_enum_arg));
#else
 scanf("%39s", nag_enum_arg);
#endif
/* nag_enum_name_to_value (x04nac).
 * Converts NAG enum member name to value
 */
weight = (Nag_Weightstype) nag_enum_name_to_value(nag_enum_arg);
if (n >= nx+ng && m >= nx)
{
 if (!(x = NAG_ALLOC(n*m, double)) ||
 || !(wt = NAG_ALLOC(n, double)) ||
 || !(ing = NAG_ALLOC(n, Integer)) ||
 || !(e = NAG_ALLOC((WIN(nx, ng-1))*6, double)) ||
 || !(cvm = NAG_ALLOC(n*nx, double)) ||
 || !(cvx = NAG_ALLOC(nx*(ng-1), double)) ||
 || !(nig = NAG_ALLOC(ng, Integer)) ||
 || !(isx = NAG_ALLOC(m, Integer))
 {
 printf("Allocation failure\n");
 exit_status = -1;
 goto END;
 }
 tdx = m;
 tde = 6;
 tdcvm = nx;
 tdcvx = ng-1;
} else
{
 printf("Invalid n or m.\n");
 exit_status = 1;
 return exit_status;
}
if (weight == Nag_Weightsfreq || weight == Nag_Weightsvar)
{
 for (i = 0; i < n; ++i)
 {
 for (j = 0; j < m; ++j)
#ifdef _WIN32
 scanf_s("%lf", &X(i, j));
#else
 scanf("%lf", &X(i, j));
#endif
ifdef _WIN32
 scanf_s("%lf", &wt[i]);
#else
 scanf("%lf", &wt[i]);
#endif
}
}
```c
#endif 
#ifdef _WIN32 
scanf_s("%f", &X(i, j)); 
#else 
scanf("%f", &X(i, j)); 
#endif 
#ifdef _WIN32 
scanf_s("%d", &isx[j]); 
#else 
scanf("%d", &isx[j]); 
#endif 

tol = 1e-6; 
/* nag_mv_canon_var (g03acc). * Canonical variate analysis */ 
	nag_mv_canon_var(weight, n, m, x, tdx, isx, nx, ing, ng, wt, nig, 
cvm, tdcvm, e, tde, &ncv, cvx, tdcvx, tol, &irx, &fail); 
if (fail.code != NE_NOERROR) 
{ 
printf("Error from nag_mv_canon_var (g03acc).\n%s\n", fail.message); 
extit_status = 1; 
goto END; 
} 

printf("%s%2d
", "Rank of x = ", irx); 
printf("Canonical Eigenvalues Percentage CHISQ
" DF SIG \n"); 
printf("Correlations Variation\n"); 
for (i = 0; i < ncv; ++i) 
{ 
for (j = 0; j < 6; ++j) 
printf("%12.4f", E(i, j)); 
printf("\n"); 
} 
printf("\nCanonical Coefficients for X\n"); 
for (i = 0; i < nx; ++i) 
{ 
for (j = 0; j < ncv; ++j) 
printf("%9.4f", CVX(i, j)); 
printf("\n"); 
} 
printf("\nCanonical variate means\n"); 
for (i = 0; i < ng; ++i) 
{ 
for (j = 0; j < ncv; ++j) 
printf("%9.4f", CVM(i, j)); 
printf("\n"); 
} 
```

END:
NAG_FREE(x);
NAG_FREE(wt);
NAG_FREE(ing);
NAG_FREE(e);
NAG_FREE(cvm);
NAG_FREE(cvx);
NAG_FREE(nig);
NAG_FREE(isx);

return exit_status;
}

10.2 Program Data

nag_mv_canon_var (g03acc) Example Program Data
9 3 3 3 Nag_NoWeights
13.3 10.6 21.2 1
13.6 10.2 21.0 2
14.2 10.7 21.1 3
13.4 9.4 21.0 1
13.2 9.6 20.1 2
13.9 10.4 19.8 3
12.9 10.0 20.5 1
12.2 9.9 20.7 2
13.9 11.0 19.1 3
1 1 1

10.3 Program Results

nag_mv_canon_var (g03acc) Example Program Results

Rank of x = 3

<table>
<thead>
<tr>
<th>Canonical</th>
<th>Eigenvalues</th>
<th>Percentage</th>
<th>CHISQ</th>
<th>DF</th>
<th>SIG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correlations</td>
<td>3.5238</td>
<td>0.9795</td>
<td>7.9032</td>
<td>6.0000</td>
<td>0.2453</td>
</tr>
<tr>
<td></td>
<td>0.0739</td>
<td>0.0205</td>
<td>0.3564</td>
<td>2.0000</td>
<td>0.8368</td>
</tr>
</tbody>
</table>

Canonical Coefficients for X
-1.7070 0.7277
-1.3481 0.3138
0.9327 1.2199

Canonical variate means
0.9841 -0.2797
1.1805 -0.2632
-2.1646 -0.0164