NAG Library Function Document

nag_glm_gamma (g02gdc)

1 Purpose
nag_glm_gamma (g02gdc) fits a generalized linear model with gamma errors.

2 Specification
#include <nag.h>
#include <nagg02.h>

void nag_glm_gamma (Nag_Link link, Nag_IncludeMean mean, Integer n,
const double x[], Integer tdx, Integer m, const Integer sx[],
Integer ip, const double y[], const double wt[], double offset[],
double *scale, double ex_power, double *dev, double *df, double b[],
Integer *rank, double se[], double cov[], double v[], Integer tdv,
double tol, Integer max_iter, Integer print_iter, const char *outfile,
double eps, NagError *fail)

3 Description
A generalized linear model with gamma errors consists of the following elements:
(a) a set of \(n \) observations, \(y_i \), from a gamma distribution with probability density function:
\[
\frac{1}{C_0} \frac{\nu y^{\nu - 1}}{\mu^\nu} \exp\left(-\frac{\nu y}{\mu}\right)
\]
\(\nu \) being constant for the sample.
(b) \(X \), a set of \(p \) independent variables for each observation, \(x_1, x_2, \ldots, x_p \).
(c) a linear model:
\[
\eta = \sum \beta_j x_j.
\]
(d) a link between the linear predictor, \(\eta \), and the mean of the distribution, \(\mu \), \(\eta = g(\mu) \). The possible link functions are:
(i) power link: \(\eta = \mu^a \), for a constant \(a \),
(ii) identity link: \(\eta = \mu \),
(iii) log link: \(\eta = \log \mu \),
(iv) square root link: \(\eta = \sqrt{\mu} \),
(e) reciprocal link: \(\eta = \frac{1}{\mu} \).
(f) a measure of fit, an adjusted deviance. This is a function related to the deviance, but defined for \(y = 0 \):
\[
\sum_{i=1}^{n} \text{dev}^*(y_i, \hat{\mu}_i) = \sum_{i=1}^{n} 2 \left\{ \log(\hat{\mu}_i) + \left(\frac{y_i}{\hat{\mu}_i}\right) \right\}
\]
The linear arguments are estimated by iterative weighted least squares. An adjusted dependent variable, \(z \), is formed:
\[
z = \eta + (y - \mu) \frac{d\eta}{d\mu}
\]
and a working weight, \(w \),
\[w = \sqrt{\frac{d\eta}{d\mu}}, \quad \text{where} \quad \tau = \frac{1}{\mu}. \]

At each iteration an approximation to the estimate of \(\beta, \hat{\beta} \) is found by the weighted least squares regression of \(z \) on \(X \) with weights \(w \).

\text{nag_glm_gamma (g02gdc)} finds a \(QR \) decomposition of \(w^\dagger X \), i.e.,

\[w^\dagger X = QR \]

where \(R \) is a \(p \) by \(p \) triangular matrix and \(Q \) is an \(n \) by \(p \) column orthogonal matrix. If \(R \) is of full rank then \(\hat{\beta} \) is the solution to:

\[R \hat{\beta} = Q^T w^\dagger z. \]

If \(R \) is not of full rank a solution is obtained by means of a singular value decomposition (SVD) of \(R \).

\[R = Q_s \begin{pmatrix} D & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} P^T. \]

where \(D \) is a \(k \) by \(k \) diagonal matrix with nonzero diagonal elements, \(k \) being the rank of \(R \) and \(w^\dagger X \).

This gives the solution

\[\hat{\beta} = P_1 D^{-1} \begin{pmatrix} Q_s & \mathbf{0} \\ \mathbf{0} & 1 \end{pmatrix} Q^T w^\dagger z \]

\(P_1 \) being the first \(k \) columns of \(P \), i.e., \(P = (P_1 P_k) \).

The iterations are continued until there is only a small change in the deviance.

The initial values for the algorithm are obtained by taking

\[\hat{\eta} = g(\mathbf{u}) \]

The scale argument, \(\nu^{-1} \) is estimated by a moment estimator:

\[\hat{\nu}^{-1} = \frac{n}{\sum_{i=1}^{n} ((y_i - \hat{\mu}_i)/\hat{\mu})^2}{(n-k)}. \]

The fit of the model can be assessed by examining and testing the deviance, in particular, by comparing the difference in deviance between nested models, i.e., when one model is a sub-model of the other. The difference in deviance or adjusted deviance between two nested models with known \(\nu \) has, asymptotically, a \(\chi^2 \) distribution with degrees of freedom given by the difference in the degrees of freedom associated with the two deviances.

The arguments estimates, \(\hat{\beta} \), are asymptotically Normally distributed with variance-covariance matrix:

\[C = R^{-1} R^{-T} \]

in the full rank case, otherwise

\[C = P_1 D^{-2} P_1^T \]

The residuals and influence statistics can also be examined.

The estimated linear predictor \(\hat{\eta} = X \hat{\beta} \), can be written as \(H w^\dagger z \) for an \(n \) by \(n \) matrix \(H \). The \(i \)th diagonal elements of \(H \), \(h_i \), give a measure of the influence of the \(i \)th values of the independent variables on the fitted regression model. These are known as leverages.

The fitted values are given by \(\hat{\mu} = g^{-1}(\hat{\eta}) \).

\text{nag_glm_gamma (g02gdc)} also computes the Anscombe residuals, \(r \):

\[r_i = \frac{3 (y_i^3 - \hat{\mu}_i^3)}{\hat{\mu}_i^4} \]
An option allows the use of prior weights, \(\omega_i \). This gives a model with:

\[\nu_i = \nu \omega_i \]

In many linear regression models the first term is taken as a mean term or an intercept, i.e., \(x_{i,1} = 1, \) for \(i = 1, 2, \ldots, n \). This is provided as an option.

Often only some of the possible independent variables are included in a model, the facility to select variables to be included in the model is provided.

If part of the linear predictor can be represented by a variable with a known coefficient then this can be included in the model by using an offset, \(o \):

\[\eta = o + \sum \beta_j x_j. \]

If the model is not of full rank the solution given will be only one of the possible solutions. Other estimates may be obtained by applying constraints to the arguments. These solutions can be obtained by using nag_glm_tran_model (g02gkc) after using nag_glm_gamma (g02gdc).

Only certain linear combinations of the arguments will have unique estimates, these are known as estimable functions, these can be estimated and tested using nag_glm_est_func (g02gnc).

Details of the SVD, are made available, in the form of the matrix \(P^* \):

\[P^* = \begin{pmatrix} D^{-1} P_1^T \\ P_0^T \end{pmatrix}. \]

4 References

5 Arguments

1: link – Nag_Link

\emph{On entry:} indicates which link function is to be used.

\begin{align*}
\text{link} &= \text{Nag_Expo} \\
& \quad \text{An exponent link is used.} \\
\text{link} &= \text{Nag_Iden} \\
& \quad \text{An identity link is used.} \\
\text{link} &= \text{Nag_Log} \\
& \quad \text{A log link is used.} \\
\text{link} &= \text{Nag_Sqrt} \\
& \quad \text{A square root link is used.} \\
\text{link} &= \text{Nag_Reci} \\
& \quad \text{A reciprocal link is used.}
\end{align*}

\emph{Constraint:} link = Nag_Expo, Nag_Iden, Nag_Log, Nag_Sqrt or Nag_Reci.

2: mean – Nag_IncludeMean

\emph{On entry:} indicates if a mean term is to be included.

\begin{align*}
\text{mean} &= \text{Nag_MeanInclude} \\
& \quad \text{A mean term, (intercept), will be included in the model.} \\
\text{mean} &= \text{Nag_MeanZero} \\
& \quad \text{The model will pass through the origin, zero point.}
\end{align*}

\emph{Constraint:} mean = Nag_MeanInclude or Nag_MeanZero.
3: \(n \) – Integer
 Input

 On entry: the number of observations, \(n \).

 Constraint: \(n \geq 2 \).

4: \(x[n \times tdx] \) – const double
 Input

 On entry: \(x[(i - 1) \times tdx + j - 1] \) must contain the \(i \)th observation for the \(j \)th independent variable, for \(i = 1, 2, \ldots, n \) and \(j = 1, 2, \ldots, m \).

5: \(tdx \) – Integer
 Input

 On entry: the stride separating matrix column elements in the array \(x \).

 Constraint: \(tdx \geq m \).

6: \(m \) – Integer
 Input

 On entry: the total number of independent variables.

 Constraint: \(m \geq 1 \).

7: \(sx[m] \) – const Integer
 Input

 On entry: indicates which independent variables are to be included in the model.

 If \(sx[j - 1] > 0 \), then the variable contained in the \(j \)th column of \(x \) is included in the regression model.

 Constraints:

 \(sx[j - 1] \geq 0 \), for \(j = 1, 2, \ldots, m \); if \(\text{mean} = \text{Nag MeanInclude} \), then exactly \(ip - 1 \) values of \(sx \) must be > 0; if \(\text{mean} = \text{Nag MeanZero} \), then exactly \(ip \) values of \(sx \) must be > 0.

8: \(ip \) – Integer
 Input

 On entry: the number \(p \) of independent variables in the model, including the mean or intercept if present.

 Constraint: \(ip \) must be > 0.

9: \(y[n] \) – const double
 Input

 On entry: observations on the dependent variable, \(y_i \), for \(i = 1, 2, \ldots, n \).

 Constraint: \(y[i - 1] \geq 0 \), for \(i = 1, 2, \ldots, n \).

10: \(wt[n] \) – const double
 Input

 On entry: if weighted estimates are required, then \(wt \) must contain the weights to be used. Otherwise \(wt \) need not be defined and may be set to **NULL**.

 If \(wt[i - 1] = 0.0 \), then the \(i \)th observation is not included in the model, in which case the effective number of observations is the number of observations with positive weights.

 If \(wt \) is **NULL**, then the effective number of observations is \(n \).

 Constraint: \(wt \) is **NULL** or \(wt[i - 1] \geq 0.0 \), for \(i = 1, 2, \ldots, n \).

11: \(offset[n] \) – double
 Input

 On entry: if an offset is required then \(offset \) must contain the values of the offset \(o \). Otherwise \(offset \) must be supplied as **NULL**.
scale – double *

Input/Output

On entry: the scale argument for the gamma model, \(\nu^{-1} \).

If \(\text{scale} = 0.0 \), then the scale argument is estimated with the function using the formula described in Section 3.

On exit: if on input \(\text{scale} = 0.0 \), then \(\text{scale} \) contains the estimated value of the scale argument, \(\nu^{-1} \). If on input \(\text{scale} \neq 0.0 \), then \(\text{scale} \) is unchanged on exit.

Constraint: \(\text{scale} \geq 0.0 \).

ex_power – double

Input

On entry: if \(\text{link} = \text{Nag_Expo} \) then \(\text{ex_power} \) must contain the power \(a \) of the exponential.

If \(\text{link} \neq \text{Nag_Expo} \), \(\text{ex_power} \) is not referenced.

Constraint: if \(\text{link} = \text{Nag_Expo} \), \(\text{ex_power} \neq 0.0 \).

b[ip] – double

Output

On exit: the estimates of the arguments of the generalized linear model, \(\hat{\beta} \).

If \(\text{mean} = \text{Nag_MeanInclude} \), then \(b[0] \) will contain the estimate of the mean argument and \(b[i] \) will contain the coefficient of the variable contained in column \(j \) of \(x \), where \(sx[j-1] \) is the \(i \)th positive value in the array \(sx \).

If \(\text{mean} = \text{Nag_MeanZero} \), then \(b[i-1] \) will contain the coefficient of the variable contained in column \(j \) of \(x \), where \(sx[j-1] \) is the \(i \)th positive value in the array \(sx \).

rank – Integer *

Output

On exit: the rank of the independent variables.

If the model is of full rank, then \(\text{rank} = \text{ip} \).

If the model is not of full rank, then \(\text{rank} \) is an estimate of the rank of the independent variables. \(\text{rank} \) is calculated as the number of singular values greater than \(\text{eps} \times \) (largest singular value). It is possible for the SVD to be carried out but \(\text{rank} \) to be returned as \(\text{ip} \).

se[ip] – double

Output

On exit: the standard errors of the linear arguments.

\(\text{se}[i-1] \) contains the standard error of the parameter estimate in \(b[i-1] \), for \(i = 1, 2, \ldots, \text{ip} \).

\(\text{cov}[(\text{ip} + 1)/2] \) – double

Output

On exit: the \(\text{ip} \times (\text{ip} + 1)/2 \) elements of \(\text{cov} \) contain the upper triangular part of the variance-covariance matrix of the \(\text{ip} \) parameter estimates given in \(b \). They are stored packed by column, i.e., the covariance between the parameter estimate given in \(b[i] \) and the parameter estimate given in \(b[j] \), \(j \geq i \), is stored in \(\text{cov}[j(j+1)/2 + i] \), for \(i = 0, 1, \ldots, \text{ip} - 1 \) and \(j = i, \ldots, \text{ip} - 1 \).

v[n × tdv] – double

Output

On exit: auxiliary information on the fitted model.

\(v[(i - 1) \times \text{tdv}] \), contains the linear predictor value, \(\eta_i \), for \(i = 1, 2, \ldots, n \).
$v[\{i - 1\} \times \text{tdv} + 1]$, contains the fitted value, $\hat{\mu}_i$, for $i = 1, 2, \ldots, n$.

$v[\{i - 1\} \times \text{tdv} + 2]$, contains the variance standardization, τ_i, for $i = 1, 2, \ldots, n$.

$v[\{i - 1\} \times \text{tdv} + 3]$, contains the working weight, w_i, for $i = 1, 2, \ldots, n$.

$v[\{i - 1\} \times \text{tdv} + 4]$, contains the Anscombe residual, r_i, for $i = 1, 2, \ldots, n$.

$v[\{i - 1\} \times \text{tdv} + 5]$, contains the leverage, h_i, for $i = 1, 2, \ldots, n$.

$v[\{i - 1\} \times \text{tdv} + j - 1]$, for $j = 7, 8, \ldots, \text{ip} + 6$, contains the results of the QR decomposition or the singular value decomposition.

If the model is not of full rank, i.e., $\text{rank} < \text{ip}$, then the first ip rows of columns 7 to $\text{ip} + 6$ contain the P^* matrix.

21: \textbf{tdv} – Integer
\textit{Input}
\textit{On entry:} the stride separating matrix column elements in the array v.
\textit{Constraint:} $\text{tdv} \geq \text{ip} + 6$.

22: \textbf{tol} – double
\textit{Input}
\textit{On entry:} indicates the accuracy required for the fit of the model.
The iterative weighted least squares procedure is deemed to have converged if the absolute change in deviance between interactions is less than $\text{tol} \times (1.0 + \text{Current Deviance})$. This is approximately an absolute precision if the deviance is small and a relative precision if the deviance is large.
If $0.0 \leq \text{tol} < \text{machine precision}$, then the function will use $10 \times \text{machine precision}$.
\textit{Constraint:} $\text{tol} \geq 0.0$.

23: \textbf{max_iter} – Integer
\textit{Input}
\textit{On entry:} the maximum number of iterations for the iterative weighted least squares.
If $\text{max_iter} = 0$, then a default value of 10 is used.
\textit{Constraint:} $\text{max_iter} \geq 0$.

24: \textbf{print_iter} – Integer
\textit{Input}
\textit{On entry:} indicates if the printing of information on the iterations is required and the rate at which printing is produced.
$\text{print_iter} \leq 0$
\hspace{1em} There is no printing.
$\text{print_iter} > 0$
\hspace{1em} The following items are printed every print_iter iterations:
\hspace{1.5em} (i) the deviance,
\hspace{1.5em} (ii) the current estimates, and
\hspace{1.5em} (iii) if the weighted least squares equations are singular then this is indicated.

25: \textbf{outfile} – const char *
\textit{Input}
\textit{On entry:} a null terminated character string giving the name of the file to which results should be printed. If outfile is NULL or an empty string then the stdout stream is used. Note that the file will be opened in the append mode.

26: \textbf{eps} – double
\textit{Input}
\textit{On entry:} the value of eps is used to decide if the independent variables are of full rank and, if not, what the rank of the independent variables is. The smaller the value of eps the stricter the criterion for selecting the singular value decomposition.
If \(0.0 \leq \epsilon < \text{machine precision} \), then the function will use \text{machine precision} instead.

Constraint: \(\epsilon \geq 0.0 \).

27: \text{fail} – NagError *

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

\textbf{NE_2_INT_ARG_LT}

On entry, \(\text{tdx} = \langle \text{value} \rangle \) while \(m = \langle \text{value} \rangle \). These arguments must satisfy \(\text{tdx} \geq m \).

\textbf{NE_ALLOC_FAIL}

Dynamic memory allocation failed.

\textbf{NE_BAD_PARAM}

On entry, argument \text{link} had an illegal value.

On entry, argument \text{mean} had an illegal value.

\textbf{NE_INT_ARG_LT}

On entry, \(\text{ip} = \langle \text{value} \rangle \). Constraint: \(\text{ip} \geq 1 \).

On entry, \(m = \langle \text{value} \rangle \). Constraint: \(m \geq 1 \).

On entry, \(\text{max_iter} \) must not be less than 0: \(\text{max_iter} = \langle \text{value} \rangle \).

On entry, \(n = \langle \text{value} \rangle \). Constraint: \(n \geq 2 \).

On entry, \(sx[\langle \text{value} \rangle] \) must not be less than 0: \(sx[\langle \text{value} \rangle] = \langle \text{value} \rangle \).

On entry, \(\text{tdv} = \langle \text{value} \rangle \) while \(\text{ip} = \langle \text{value} \rangle \). These arguments must satisfy \(\text{tdv} \geq \text{ip} + 6 \).

\textbf{NE_IP_GT_OBSERV}

\(\text{ip} \) is greater than the effective number of observations.

\textbf{NE_IP_INCOMP_SX}

\(\text{ip} \) is incompatible with \text{mean} and \(\text{sx} \).

\textbf{NE_LSQ_ITER_NOT_CONV}

The iterative weighted least squares has failed to converge in \(\text{max_iter} = \langle \text{value} \rangle \) iterations. The value of \text{max_iter} could be increased but it may be advantageous to examine the convergence using the \text{print_iter} option. This may indicate that the convergence is slow because the solution is at a boundary in which case it may be better to reformulate the model.

\textbf{NE_NOT_APPEND_FILE}

Cannot open file \(\langle \text{string} \rangle \) for appending.

\textbf{NE_NOT_CLOSE_FILE}

Cannot close file \(\langle \text{string} \rangle \).
The rank of the model has changed during the weighted least squares iterations. The estimate for β returned may be reasonable, but you should check how the deviance has changed during iterations.

On entry, \texttt{eps} must not be less than 0.0: $\texttt{eps} = (\text{value})$.
On entry, \texttt{scale} must not be less than 0.0: $\texttt{scale} = (\text{value})$.
On entry, \texttt{tol} must not be less than 0.0: $\texttt{tol} = (\text{value})$.
On entry, $\texttt{wt}(\text{value})$ must not be less than 0.0: $\texttt{wt}(\text{value}) = (\text{value})$.
On entry, $\texttt{y}(\text{value})$ must not be less than 0.0: $\texttt{y}(\text{value}) = (\text{value})$.

On entry, $\texttt{ex}_\text{power} = 0.0$, $\texttt{link} = \text{Nag_Expo}$. These arguments must satisfy $\texttt{link} = \text{Nag_Expo}$ and $\texttt{ex}_\text{power} \neq 0.0$.

The singular value decomposition has failed to converge.

A fitted value is at a boundary, i.e., $\hat{\mu} = 0.0$. This may occur if there are small values of y and the model is not suitable for the data. The model should be reformulated with, perhaps, some observations dropped.

The degrees of freedom for error are 0. A saturated model has been fitted.

The accuracy is determined by \texttt{tol} as described in Section 5. As the adjusted deviance is a function of $\log(\mu)$ the accuracy of the $\hat{\beta}$'s will be a function of \texttt{tol}. \texttt{tol} should therefore be set to a smaller value than the accuracy required for $\hat{\beta}$.

Not applicable.

None.

A set of 10 observations from two groups is input and a model for the two groups is fitted.

/* nag_glm_gamma (g02gdc) Example Program. */
/* Copyright 2014 Numerical Algorithms Group. */
/* Mark 4, 1996. */
/* Mark 8 revised, 2004. */
```c
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <ctype.h>
#include <nagg02.h>

#define X(I, J) x[(I) *tdx + J]
#define V(I, J) v[(I) *tdv + J]

int main(void)
{
    Integer exit_status = 0, i, ip, j, m, max_iter, n, print_iter, rank;
    Integer *sx = 0;
    Integer tdx, tdv;
    double dev, df, eps, ex_power, scale, tol;
    double *b = 0, *cov = 0, *offsetptr = (double *) 0;
    double *se = 0, *v = 0, *wt = 0, *wtptr, *x = 0, *y = 0;
    char nag_enum_arg[40];
    Nag_IncludeMean mean;
    Nag_Link link;
    Nag_Boolean weight;
    NagError fail;

    INIT_FAIL(fail);

    printf("nag_glm_gamma (g02gdc) Example Program Results\n");
    /* Skip heading in data file */
    #ifdef _WIN32
    scanf_s("%*[\n]");
    #else
    scanf("%*[\n]");
    #endif
    #ifdef _WIN32
    scanf_s(" %39s", nag_enum_arg, _countof(nag_enum_arg));
    #else
    scanf(" %39s", nag_enum_arg);
    #endif
    link = (Nag_Link) nag_enum_name_to_value(nag_enum_arg);
    #ifdef _WIN32
    scanf_s(" %39s", nag_enum_arg, _countof(nag_enum_arg));
    #else
    scanf(" %39s", nag_enum_arg);
    #endif
    mean = (Nag_IncludeMean) nag_enum_name_to_value(nag_enum_arg);
    #ifdef _WIN32
    scanf_s(" %39s", nag_enum_arg, _countof(nag_enum_arg));
    #else
    scanf(" %39s", nag_enum_arg);
    #endif
    weight = (Nag_Boolean) nag_enum_name_to_value(nag_enum_arg);
    #ifdef _WIN32
    scanf_s("%"NAG_IFMT" %"NAG_IFMT" %"NAG_IFMT" %lf", &n, &m, &print_iter, &scale);
    #else
    scanf("%"NAG_IFMT" %"NAG_IFMT" %"NAG_IFMT" %lf", &n, &m, &print_iter, &scale);
    #endif
    if (n >= 2 && m >= 1)
    {
        if (!wt = NAG_ALLOC(n, double)) ||
            !(x = NAG_ALLOC(n*(m), double)) ||
            !(y = NAG_ALLOC(n, double)) ||
            !(sx = NAG_ALLOC(m, Integer)))
        {
            printf("Allocation failure\n");
        }
    }
}
```

The code is written in C and includes the necessary header files for the NAG library. It defines various parameters and uses NAG functions to allocate memory and perform operations on arrays. The main function initializes variables, reads input data, and calls NAG functions to perform a GLM (Generalized Linear Model) analysis. It then prints the results of the analysis.
exit_status = -1;
goto END;
}
tdx = m;
else
{
 printf("Invalid n or m.\n\n");
 exit_status = 1;
 return exit_status;
}
if (weight)
{
 wtptr = wt;
 for (i = 0; i < n; i++)
 {
 for (j = 0; j < m; j++)
 scanf("%lf", &X(i, j));
 }
}
else
{
 wtptr = (double *) 0;
 for (i = 0; i < n; i++)
 {
 for (j = 0; j < m; j++)
 scanf("%lf", &X(i, j));
 }
}
for (j = 0; j < m; j++)
 scanf("%"NAG_IFMT", &sx[j]);
/* Calculate ip */
ip = 0;
for (j = 0; j < m; j++)
 if (sx[j] > 0) ip += 1;
if (mean == Nag_MeanInclude)
ip += 1;
if (link == Nag_Expo)
 scanf("%lf", &ex_power);
#endif
#else
 scanf("%lf", &ex_power);
#endif
else
 ex_power = 0.0;
if (!(b = NAG_ALLOC(ip, double)) ||
 !(v = NAG_ALLOC(n*(ip+6), double))) ||
!(se = NAG_ALLOC(ip, double)) ||
!(cov = NAG_ALLOC(ip*(ip+1)/2, double)))
{
 printf("Allocation failure\n");
 exit_status = -1;
 goto END;
}

tdv = ip+6;

/*@ Set other control parameters */
max_iter = 10;
tol = 5e-5;
eps = 1e-6;

/*@ nag_glm_gamma (g02gdc).
* Fits a generalized linear model with gamma errors
*/

nag_glm_gamma(link, mean, n, x, tdx, m, sx, ip, y,
 wtptr, offsetptr, &scale, ex_power, &dev, &df, b, &rank,
 se, cov, v, tdv, tol, max_iter,
 print_iter, "", eps, &fail);

if (fail.code == NE_NOERROR || fail.code == NE_LSQ_ITER_NOT_CONV ||
 fail.code == NE_RANK_CHANGED || fail.code == NE_ZERO_DOF_ERROR)
{
 if (fail.code != NE_NOERROR) {
 printf("Error from nag_glm_gamma (g02gdc).\n", fail.message);
 }
 printf("\nDeviance = %13.4e\n", dev);
 printf("Degrees of freedom = %3.1f\n", df);
 printf(" Estimate Standard error\n");
 for (i = 0; i < ip; i++)
 printf("%14.4f%14.4f\n", b[i], se[i]);
 printf("\n");
 printf(" y fitted value Residual Leverage\n");
 for (i = 0; i < n; ++i)
 { printf("%7.1f%10.2f%12.4f%10.3f\n", y[i], V(i, 1), V(i, 4),
 V(i, 5));
 }
}
else
{
 printf("Error from nag_glm_gamma (g02gdc).\n", fail.message);
 exit_status = 1;
 goto END;
}

END:
NAG_FREE(wt);
NAG_FREE(x);
NAG_FREE(y);
NAG_FREE(sx);
NAG_FREE(b);
NAG_FREE(v);
NAG_FREE(se);
NAG_FREE(cov);

return exit_status;
10.2 Program Data

nag_glm_gamma (g02gdc) Example Program Data

<table>
<thead>
<tr>
<th>Nag_Reci</th>
<th>Nag_MeanInclude</th>
<th>Nag_FALSE</th>
<th>10</th>
<th>1.0</th>
<th>0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>3.0</td>
<td>10.5</td>
<td>9.7</td>
<td>0.0</td>
</tr>
<tr>
<td>0.0</td>
<td>0.62</td>
<td>0.12</td>
<td>0.09</td>
<td>0.09</td>
<td>0.0</td>
</tr>
<tr>
<td>0.0</td>
<td>0.05</td>
<td>2.14</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10.3 Program Results

nag_glm_gamma (g02gdc) Example Program Results

Deviance = 3.5034e+01

Degrees of freedom = 8.0

<table>
<thead>
<tr>
<th>Estimate</th>
<th>Standard error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4408</td>
<td>0.6678</td>
</tr>
<tr>
<td>-1.2865</td>
<td>0.6717</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>y</th>
<th>fitted value</th>
<th>Residual</th>
<th>Leverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>6.48</td>
<td>-1.3909</td>
<td>0.200</td>
</tr>
<tr>
<td>0.3</td>
<td>6.48</td>
<td>-1.9228</td>
<td>0.200</td>
</tr>
<tr>
<td>10.5</td>
<td>6.48</td>
<td>0.5236</td>
<td>0.200</td>
</tr>
<tr>
<td>9.7</td>
<td>6.48</td>
<td>0.4318</td>
<td>0.200</td>
</tr>
<tr>
<td>10.9</td>
<td>6.48</td>
<td>0.5678</td>
<td>0.200</td>
</tr>
<tr>
<td>0.6</td>
<td>0.69</td>
<td>-0.1107</td>
<td>0.200</td>
</tr>
<tr>
<td>0.1</td>
<td>0.69</td>
<td>-1.3287</td>
<td>0.200</td>
</tr>
<tr>
<td>0.1</td>
<td>0.69</td>
<td>-1.4815</td>
<td>0.200</td>
</tr>
<tr>
<td>0.5</td>
<td>0.69</td>
<td>-0.3106</td>
<td>0.200</td>
</tr>
<tr>
<td>2.1</td>
<td>0.69</td>
<td>1.3665</td>
<td>0.200</td>
</tr>
</tbody>
</table>