1 Purpose

nag_glm_binomial (g02gbc) fits a generalized linear model with binomial errors.

2 Specification

```c
#include <nag.h>
#include <nagged02.h>

void nag_glm_binomial (Nag_Link link, Nag_IncludeMean mean, Integer n,
const double x[], Integer tdx, Integer m, const Integer sx[],
Integer ip, const double y[], const double binom_t[], const double wt[],
const double offset[], double *dev, double *df, double b[],
Integer *rank, double se[], double cov[], double v[], Integer tdv,
double tol, Integer max_iter, Integer print_iter, const char *outfile,
double eps, NagError *fail)
```

3 Description

A generalized linear model with binomial errors consists of the following elements:

(a) a set of \(n \) observations, \(y_i \), from a binomial distribution:
\[
\left(\frac{t}{y} \right)^y \left(1 - \frac{t}{y} \right)^{n-y}.
\]

(b) \(X \), a set of \(p \) independent variables for each observation, \(x_1, x_2, \ldots, x_p \).

(c) a linear model:
\[
\eta = \sum \beta_j x_j.
\]

(d) a link function \(\eta = g(\mu) \), linking the linear predictor, \(\eta \) and the mean of the distribution, \(\mu = \pi t \).

The possible link functions are:

(i) logistic link: \(\eta = \log \left(\frac{\mu}{t - \mu} \right) \),

(ii) probit link: \(\eta = \Phi^{-1} \left(\frac{t}{\pi} \right) \),

(iii) complementary log-log link: \(\log \left(-\log \left(1 - \frac{t}{\pi} \right) \right) \).

(e) a measure of fit, the deviance:
\[
\sum_{i=1}^{n} \text{dev}(y_i, \hat{\mu}_i) = \sum_{i=1}^{n} \left\{ y_i \log \left(\frac{y_i}{\hat{\mu}_i} \right) + (t_i - y_i) \log \left(\frac{(t_i - y_i)}{(t_i - \hat{\mu}_i)} \right) \right\}
\]

The linear arguments are estimated by iterative weighted least squares. An adjusted dependent variable, \(z \), is formed:
\[
z = \eta + (y - \mu) \frac{d\eta}{d\mu}
\]

and a working weight, \(w \),
\[
w = \left(\tau \frac{d\eta}{d\mu} \right)^2 \quad \text{where} \quad \tau = \sqrt{\frac{t}{\mu(t - \mu)}}
\]
At each iteration an approximation to the estimate of β, $\hat{\beta}$ is found by the weighted least squares regression of z on X with weights w.

nag_glm_binomial (g02gbc) finds a QR decomposition of $w^\dagger X$, i.e.,

$$w^\dagger X = QR$$

where R is a p by p triangular matrix and Q is an n by p column orthogonal matrix.

If R is of full rank then $\hat{\beta}$ is the solution to:

$$R\hat{\beta} = Q^T w^\dagger z$$

If R is not of full rank a solution is obtained by means of a singular value decomposition (SVD) of R.

$$R = Q_s \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix} P^T,$$

where D is a k by k diagonal matrix with nonzero diagonal elements, k being the rank of R and $w^\dagger X$.

This gives the solution

$$\hat{\beta} = P_1 D^{-1} \begin{pmatrix} Q_s & 0 \\ 0 & I \end{pmatrix} Q^T w^\dagger z$$

P_1 being the first k columns of P, i.e., $P = (P_1 P_b)$.

The iterations are continued until there is only a small change in the deviance.

The initial values for the algorithm are obtained by taking

$$\hat{\eta} = g(y)$$

The fit of the model can be assessed by examining and testing the deviance, in particular, by comparing the difference in deviance between nested models, i.e., when one model is a sub-model of the other. The difference in deviance between two nested models has, asymptotically, a χ^2 distribution with degrees of freedom given by the difference in the degrees of freedom associated with the two deviances.

The arguments estimates, $\hat{\beta}$, are asymptotically Normally distributed with variance-covariance matrix:

$$C = R^{-1} R^{-T} \quad \text{in the full rank case, otherwise}$$

$$C = P_1 D^{-2} P_1^T$$

The residuals and influence statistics can also be examined.

The estimated linear predictor $\tilde{\eta} = X\hat{\beta}$, can be written as $H w^\dagger z$ for an n by n matrix H. The ith diagonal elements of H, h_i, give a measure of the influence of the ith values of the independent variables on the fitted regression model. These are known as leverages.

The fitted values are given by $\hat{\mu} = g^{-1}(\hat{\eta})$.

nag_glm_binomial (g02gbc) also computes the deviance residuals, r:

$$r_i = \text{sign}(y_i - \hat{\mu}_i) \sqrt{\text{dev}(y_i, \hat{\mu}_i)}.$$
If the model is not of full rank the solution given will be only one of the possible solutions. Other estimates may be obtained by applying constraints to the arguments. These solutions can be obtained by using nag_glm_tran_model (g02gkc) after using nag_glm_binomial (g02gbc).

Only certain linear combinations of the arguments will have unique estimates, these are known as estimable functions, these can be estimated and tested using nag_glm_est_func (g02gnc).

Details of the SVD, are made available, in the form of the matrix P^*:

$$P^* = \begin{pmatrix} D^{-1} & P^T \\ P^T & P_0^T \end{pmatrix}.$$

4 References

5 Arguments

1:
 link – Nag_Link

 Input

 On entry: indicates which link function is to be used.

 link = Nag_Logistic

 A logistic link is used.

 link = Nag_Probit

 A probit link is used.

 link = Nag_Compl

 A complementary log-log link is used.

 Constraint: **link** = Nag_Logistic, Nag_Probit or Nag_Compl.

2:
 mean – Nag_IncludeMean

 Input

 On entry: indicates if a mean term is to be included.

 mean = Nag_MeanInclude

 A mean term, (intercept), will be included in the model.

 mean = Nag_MeanZero

 The model will pass through the origin, zero point.

 Constraint: **mean** = Nag_MeanInclude or Nag_MeanZero.

3:
 n – Integer

 Input

 On entry: the number of observations, n.

 Constraint: $n \geq 2$.

4:
 x[n x tdx] – const double

 Input

 On entry: $x[(i-1) \times tdx + j-1]$ must contain the ith observation for the jth independent variable, for $i = 1, 2, \ldots, n$ and $j = 1, 2, \ldots, m$.

5:
 tdx – Integer

 Input

 On entry: the stride separating matrix column elements in the array x.

 Constraint: $tdx \geq m$.

Mark 25
6: \textbf{m} – Integer \quad \textit{Input}

 \textit{On entry:} the total number of independent variables.

 \textit{Constraint:} \(m \geq 1 \).

7: \textbf{sx[m]} – const Integer \quad \textit{Input}

 \textit{On entry:} indicates which independent variables are to be included in the model. If \(\text{sx}[j-1] > 0 \), then the variable contained in the \(j \)th column of \(\mathbf{x} \) is included in the regression model.

 \textit{Constraints:}
 \[
 \text{sx}[j-1] \geq 0, \text{ for } j = 1, 2, \ldots, m; \\
 \text{if } \text{mean} = \text{Nag_MeanInclude}, \text{ then exactly } \text{ip} - 1 \text{ values of } \text{sx} \text{ must be } > 0; \\
 \text{if } \text{mean} = \text{Nag_MeanZero}, \text{ then exactly } \text{ip} \text{ values of } \text{sx} \text{ must be } > 0.
 \]

8: \textbf{ip} – Integer \quad \textit{Input}

 \textit{On entry:} the number \(p \) of independent variables in the model, including the mean or intercept if present.

 \textit{Constraint:} \(ip > 0 \).

9: \textbf{y[n]} – const double \quad \textit{Input}

 \textit{On entry:} observations on the dependent variable, \(y_i \), for \(i = 1, 2, \ldots, n \).

 \textit{Constraint:} \(0.0 \leq y[i-1] \leq \text{binom_t}[i-1] \), for \(i = 1, 2, \ldots, n \).

10: \textbf{binom_t[n]} – const double \quad \textit{Input}

 \textit{On entry:} the binomial denominator, \(t \).

 \textit{Constraint:} \(\text{binom_t}[i] \geq 0.0 \), for \(i = 1, 2, \ldots, n \).

11: \textbf{wt[n]} – const double \quad \textit{Input}

 \textit{On entry:} if weighted estimates are required, then \(\text{wt} \) must contain the weights to be used. Otherwise \(\text{wt} \) need not be defined and may be set to \text{NULL}.

 If \(\text{wt}[i-1] = 0.0 \), then the \(i \)th observation is not included in the model, in which case the effective number of observations is the number of observations with positive weights.

 If \(\text{wt} \) is \text{NULL}, then the effective number of observations is \(n \).

 \textit{Constraint:} \(\text{wt} \) is \text{NULL} or \(\text{wt}[i-1] \geq 0.0 \), for \(i = 1, 2, \ldots, n \).

12: \textbf{offset[n]} – const double \quad \textit{Input}

 \textit{On entry:} if an offset is required then \text{offset} must contain the values of the offset \(o \). Otherwise \text{offset} must be supplied as \text{NULL}.

13: \textbf{dev} – double * \quad \textit{Output}

 \textit{On exit:} the deviance for the fitted model.

14: \textbf{df} – double * \quad \textit{Output}

 \textit{On exit:} the degrees of freedom associated with the deviance for the fitted model.

15: \textbf{b[ip]} – double \quad \textit{Output}

 \textit{On exit:} \(\hat{b}[i-1] \), \(i = 1, \ldots, \text{ip} \) contains the estimates of the arguments of the generalized linear model, \(\hat{\beta} \).
If \texttt{mean} = \texttt{Nag_MeanInclude}, then \texttt{b[0]} will contain the estimate of the mean argument and \texttt{b[i]} will contain the coefficient of the variable contained in column \texttt{j} of \texttt{x}, where \texttt{sx[j - 1]} is the \texttt{i}th positive value in the array \texttt{sx}.

If \texttt{mean} = \texttt{Nag_MeanZero}, then \texttt{b[i - 1]} will contain the coefficient of the variable contained in column \texttt{j} of \texttt{x}, where \texttt{sx[j - 1]} is the \texttt{i}th positive value in the array \texttt{sx}.

16: \texttt{rank} – Integer *
\texttt{Output}

\textit{On exit}: the rank of the independent variables.

If the model is of full rank, then \texttt{rank} = \texttt{ip}.

If the model is not of full rank, then \texttt{rank} is an estimate of the rank of the independent variables. \texttt{rank} is calculated as the number of singular values greater than \texttt{eps} \times (largest singular value). It is possible for the SVD to be carried out but \texttt{rank} to be returned as \texttt{ip}.

17: \texttt{se[ip]} – double
\texttt{Output}

\textit{On exit}: the standard errors of the linear arguments.

\texttt{se[i - 1]} contains the standard error of the parameter estimate in \texttt{b[i - 1]}, for \texttt{i = 1, 2, ..., ip}.

18: \texttt{cov[ip \times (ip + 1)/2]} – double
\texttt{Output}

\textit{On exit}: the \texttt{ip \times (ip + 1)/2} elements of \texttt{cov} contain the upper triangular part of the variance-covariance matrix of the \texttt{ip} parameter estimates given in \texttt{b}. They are stored packed by column, i.e., the covariance between the parameter estimate given in \texttt{b[j]} and the parameter estimate given in \texttt{b[j]}, \texttt{j \geq i}, is stored in \texttt{cov[j(j + 1)/2 + i]}, for \texttt{i = 0, 1, ..., ip - 1} and \texttt{j = i, ..., ip - 1}.

19: \texttt{v[n \times tdv]} – double
\texttt{Output}

\textit{On exit}: auxiliary information on the fitted model.

\texttt{v[(i - 1) \times tdv]}, contains the linear predictor value, \texttt{\eta_i}, for \texttt{i = 1, 2, ..., n}.

\texttt{v[(i - 1) \times tdv + 1]}, contains the fitted value, \texttt{\hat{\mu}_i}, for \texttt{i = 1, 2, ..., n}.

\texttt{v[(i - 1) \times tdv + 2]}, contains the variance standardization, \texttt{\tau_i}, for \texttt{i = 1, 2, ..., n}.

\texttt{v[(i - 1) \times tdv + 3]}, contains the working weight, \texttt{w_i}, for \texttt{i = 1, 2, ..., n}.

\texttt{v[(i - 1) \times tdv + 4]}, contains the deviance residual, \texttt{r_i}, for \texttt{i = 1, 2, ..., n}.

\texttt{v[(i - 1) \times tdv + 5]}, contains the leverage, \texttt{h_i}, for \texttt{i = 1, 2, ..., n}.

\texttt{v[(i - 1) \times tdv + j - 1]}, for \texttt{j = 7, 8, ..., ip + 6}, contains the results of the QR decomposition or the singular value decomposition.

If the model is not of full rank, i.e., \texttt{rank < ip}, then the first \texttt{ip} rows of columns 7 to \texttt{ip + 6} contain the \texttt{P^*} matrix.

20: \texttt{tdv} – Integer
\texttt{Input}

\textit{On entry}: the stride separating matrix column elements in the array \texttt{v}.

\textit{Constraint}: \texttt{tdv \geq ip + 6}.

21: \texttt{tol} – double
\texttt{Input}

\textit{On entry}: indicates the accuracy required for the fit of the model.

The iterative weighted least squares procedure is deemed to have converged if the absolute change in deviance between interactions is less than \texttt{tol} \times (1.0 + Current Deviance). This is approximately an absolute precision if the deviance is small and a relative precision if the deviance is large.

If \texttt{0.0 \leq tol < machine precision}, then the function will use \texttt{10 \times machine precision}.

\textit{Constraint}: \texttt{tol \geq 0.0}.
22: \texttt{max_iter} – Integer \hspace{1cm} \textit{Input}

\textit{On entry:} the maximum number of iterations for the iterative weighted least squares.

If \texttt{max_iter} = 0, then a default value of 10 is used.

\textit{Constraint:} \texttt{max_iter} \geq 0.

23: \texttt{print_iter} – Integer \hspace{1cm} \textit{Input}

\textit{On entry:} indicates if the printing of information on the iterations is required and the rate at which printing is produced.

\texttt{print_iter} \leq 0

There is no printing.

\texttt{print_iter} > 0

The following items are printed every \texttt{print_iter} iterations:

(i) the deviance,
(ii) the current estimates, and
(iii) if the weighted least squares equations are singular then this is indicated.

24: \texttt{outfile} – const char * \hspace{1cm} \textit{Input}

\textit{On entry:} a null terminated character string giving the name of the file to which results should be printed. If \texttt{outfile} is \texttt{NULL} or an empty string then the \texttt{stdout} stream is used. Note that the file will be opened in the append mode.

25: \texttt{eps} – double \hspace{1cm} \textit{Input}

\textit{On entry:} the value of \texttt{eps} is used to decide if the independent variables are of full rank and, if not, what the rank of the independent variables is. The smaller the value of \texttt{eps} the stricter the criterion for selecting the singular value decomposition.

If 0.0 \leq \texttt{eps} < \textit{machine precision}, then the function will use \textit{machine precision} instead.

\textit{Constraint:} \texttt{eps} \geq 0.0.

26: \texttt{fail} – NagError * \hspace{1cm} \textit{Input/Output}

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 \hspace{1cm} \textbf{Error Indicators and Warnings}

\textbf{NE_2_INT_ARG_LT}

On entry, \texttt{tdv} = \langle value\rangle while \texttt{ip} = \langle value\rangle. These arguments must satisfy \texttt{tdv} \geq \texttt{ip} + 6.

On entry, \texttt{tdx} = \langle value\rangle while \texttt{m} = \langle value\rangle. These arguments must satisfy \texttt{tdx} \geq \texttt{m}.

\textbf{NE_2_REAL_ARG_GT}

On entry, \texttt{y}\langle value\rangle = \langle value\rangle while \texttt{binom_t}\langle value\rangle = \langle value\rangle. These arguments must satisfy \texttt{y}\langle value\rangle \leq \texttt{binom_t}\langle value\rangle.

\textbf{NE_ALLOC_FAIL}

Dynamic memory allocation failed.

\textbf{NE_BAD_PARAM}

On entry, argument \texttt{link} had an illegal value.

On entry, argument \texttt{mean} had an illegal value.
NE_INT_ARG_LT
On entry, \(ip = \langle\text{value}\rangle\).
Constraint: \(ip \geq 1\).
On entry, \(m = \langle\text{value}\rangle\).
Constraint: \(m \geq 1\).
On entry, \(\text{max}_\text{iter}\) must not be less than 0: \(\text{max}_\text{iter} = \langle\text{value}\rangle\).
On entry, \(n = \langle\text{value}\rangle\).
Constraint: \(n \geq 2\).
On entry, \(sx[\langle\text{value}\rangle]\) must not be less than 0: \(sx[\langle\text{value}\rangle] = \langle\text{value}\rangle\).

NE_IP_GT_OBSERV
Argument \(ip\) is greater than the effective number of observations.

NE_IP_INCOMP_SX
Argument \(ip\) is incompatible with arguments \(\text{mean}\) and \(sx\).

NE_LSQ_ITER_NOT_CONV
The iterative weighted least squares has failed to converge in \(\text{max}_\text{iter} = \langle\text{value}\rangle\) iterations. The value of \(\text{max}_\text{iter}\) could be increased but it may be advantageous to examine the convergence using the print_iter option. This may indicate that the convergence is slow because the solution is at a boundary in which case it may be better to reformulate the model.

NE_NOT_APPEND_FILE
Cannot open file \(\langle\text{string}\rangle\) for appending.

NE_NOT_CLOSE_FILE
Cannot close file \(\langle\text{string}\rangle\).

NE_RANK_CHANGED
The rank of the model has changed during the weighted least squares iterations. The estimate for \(\beta\) returned may be reasonable, but you should check how the deviance has changed during iterations.

NE_REAL_ARG_LT
On entry, \(\text{binom}_t[\langle\text{value}\rangle]\) must not be less than 0.0: \(\text{binom}_t[\langle\text{value}\rangle] = \langle\text{value}\rangle\).
On entry, \(\text{eps}\) must not be less than 0.0: \(\text{eps} = \langle\text{value}\rangle\).
On entry, \(\text{tol}\) must not be less than 0.0: \(\text{tol} = \langle\text{value}\rangle\).
On entry, \(\text{wt}[\langle\text{value}\rangle]\) must not be less than 0.0: \(\text{wt}[\langle\text{value}\rangle] = \langle\text{value}\rangle\).
On entry, \(\text{y}[\langle\text{value}\rangle]\) must not be less than 0.0: \(\text{y}[\langle\text{value}\rangle] = \langle\text{value}\rangle\).

NE_SVD_NOT_CONV
The singular value decomposition has failed to converge.

NE_VALUE_AT_BOUNDARY_B
A fitted value is at a boundary, i.e., 0.0 or 1.0. This may occur if there are \(y\) values of 0.0 or \(\text{binom}_t\) and the model is too complex for the data. The model should be reformulated with, perhaps, some observations dropped.
The degrees of freedom for error are 0. A saturated model has been fitted.

7 Accuracy
The accuracy is determined by tol as described in Section 5. As the adjusted deviance is a function of $\log \mu$, the accuracy of the β's will be a function of tol. tol should therefore be set to a smaller value than the accuracy required for $\hat{\beta}$.

8 Parallelism and Performance
Not applicable.

9 Further Comments
None.

10 Example
A linear trend ($x = -1, 0, 1$) is fitted to data relating the incidence of carriers of Streptococcus pyogenes to size of tonsils. The data is described in Cox (1983).

10.1 Program Text
/* nag_glm_binomial (g02gbc) Example Program. *
 * Copyright 2014 Numerical Algorithms Group. *
 * Mark 4, 1996.
 */

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <ctype.h>
#include <nagg02.h>

#define X(I, J) x[(I) *tdx + J]
#define V(I, J) v[(I) *tdv + J]

int main(void)
{
 Integer exit_status = 0, i, *ivar = 0, j, m, max_iter, n, nvar,
 print_iter;
 Integer rank, tdv, tdx;
 Nag_IncludeMean mean;
 Nag_Link link;
 Nag_Boolean weight;
 char nag_enum_arg[40];
 double dev, df, eps, tol;
 double *beta = 0, *binom = 0, *cov = 0, *offsetptr = 0, *se = 0;
 double *v = 0, *wt = 0, *wtptr, *x = 0, *y = 0;
 NagError fail;

 INIT_FAIL(fail);

 printf("nag_glm_binomial (g02gbc) Example Program Results\n");
 /* Skip heading in data file */
 #ifdef _WIN32
 scanf_s("%*[\n]");
 #else
 scanf("%*[\n]");
 */
#ifdef _WIN32
scanf_s("%39s", nag_enum_arg, _countof(nag_enum_arg));
#else
scanf("%39s", nag_enum_arg);
#endif

/* nag_enum_name_to_value (x04nac).
* Converts NAG enum member name to value
*/
link = (Nag_Link) nag_enum_name_to_value(nag_enum_arg);
#endif

mean = (Nag_IncludeMean) nag_enum_name_to_value(nag_enum_arg);
#endif

weight = (Nag_Boolean) nag_enum_name_to_value(nag_enum_arg);
#endif

if (n >= 2 && m >= 1)
{
 if (!(binom = NAG_ALLOC(n, double)) ||
 !(wt = NAG_ALLOC(n, double)) ||
 !(x = NAG_ALLOC(n*m, double)) ||
 !(y = NAG_ALLOC(n, double)) ||
 !(ivar = NAG_ALLOC(m, Integer)))
 {
 printf("Allocation failure\n");
 exit_status = -1;
 goto END;
 }

tdx = m;
}
else
{
 printf("Invalid n or m.\n");
 exit_status = 1;
 return exit_status;
}

if (weight)
{
 wtptr = wt;
 for (i = 0; i < n; i++)
 {
 for (j = 0; j < m; j++)
#ifif _WIN32
 scanf_s("%lf", &X(i, j));
#else
 scanf("%lf", &X(i, j));
#endif
 }
#else
 scanf("%1f%1f%1f", &y[i], &binom[i], &wt[i]);
#endif
 wtptr = (double *) 0;
 for (i = 0; i < n; i++)
 {
for (j = 0; j < m; j++)
 ifdef _WIN32
 scanf_s("%lf", &X(i, j));
 #else
 scanf("%lf", &X(i, j));
 #endif
#endif _WIN32
for (j = 0; j < m; j++)
 ifdef _WIN32
 scanf_s("%lf%lf", &y[i], &binom[i]);
 #else
 scanf("%lf%lf", &y[i], &binom[i]);
 #endif
 }
 for (j = 0; j < m; j++)
 ifdef _WIN32
 scanf_s("%"NAG_IFMT", &ivar[j]);
 #else
 scanf("%"NAG_IFMT", &ivar[j]);
 #endif
 /* Calculate nvar */
 nvar = 0;
 for (i = 0; i < m; i++)
 if (ivar[i] > 0) nvar += 1;
 if (mean == Nag_MeanInclude)
 nvar += 1;
 if (! (beta = NAG_ALLOC(nvar, double)) ||
 ! (v = NAG_ALLOC((n)*(nvar+6), double)) ||
 ! (se = NAG_ALLOC(nvar, double)) ||
 ! (cov = NAG_ALLOC(nvar*(nvar+1)/2, double)))
 {
 printf("Allocation failure\n");
 exit_status = -1;
 goto END;
 }
 tdv = nvar+6;
 /* Set other control parameters */
 max_iter = 10;
 tol = 5e-5;
 eps = 1e-6;
 /* nag_glm_binomial (g02gbc).
 * Fits a generalized linear model with binomial errors
 */
 nag_glm_binomial(link, mean, n, x, tdx, m, ivar, nvar, y, binom, wtptr,
 offsetptr, &dev, &df, beta, &rank,
 se, cov, v, tdv, tol, max_iter, print_iter, ",",
 eps, &fail);
 if (fail.code == NE_NOERROR || fail.code == NE_SVD_NOT_CONV ||
 fail.code == NE_LSQ_ITER_NOT_CONV || fail.code == NE_RANK_CHANGED || fail.code == NEZERO_DOF_ERROR)
 {
 if (fail.code != NE_NOERROR) {
 printf("Error from nag_glm_binomial (g02gbc)\n");
 fail.message);
 }
 printf("\nDeviance = %13.4e\n", dev);
 printf("Degrees of freedom = %3.1f\n", df);
 printf(" Estimate Standard error\n");
 for (i = 0; i < nvar; i++)
 printf("%14.4f%14.4f\n", beta[i], se[i]);
 printf("\n");
 printf(" binom y fitted value Residual Leverage\n");
 for (i = 0; i < n; ++i)
 {
 printf("%10.1f%7.1f%10.2f%12.4f%10.3f\n", binom[i], y[i],
V(i, 1), V(i, 4), V(i, 5));
else
{
 printf("Error from nag_glm_binomial (g02gbc).\n%s\n", fail.message);
 exit_status = 1;
 goto END;
}
END:
NAG_FREE(binom);
NAG_FREE(wt);
NAG_FREE(x);
NAG_FREE(y);
NAG_FREE(beta);
NAG_FREE(v);
NAG_FREE(se);
NAG_FREE(cov);
NAG_FREE(ivar);

return exit_status;
}

10.2 Program Data

nag_glm_binomial (g02gbc) Example Program Data
Nag_Logistic Nag_MeanInclude Nag_FALSE 3 1 0
1.0 19. 516.
0.0 29. 560.
-1.0 24. 293.

10.3 Program Results

nag_glm_binomial (g02gbc) Example Program Results

Deviance = 7.3539e-02
Degrees of freedom = 1.0

<table>
<thead>
<tr>
<th>Estimate</th>
<th>Standard error</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2.8682</td>
<td>0.1217</td>
</tr>
<tr>
<td>-0.4264</td>
<td>0.1598</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>binom</th>
<th>y</th>
<th>fitted value</th>
<th>Residual</th>
<th>Leverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>516.0</td>
<td>19.0</td>
<td>18.45</td>
<td>0.1296</td>
<td>0.769</td>
</tr>
<tr>
<td>560.0</td>
<td>29.0</td>
<td>30.10</td>
<td>-0.2070</td>
<td>0.422</td>
</tr>
<tr>
<td>293.0</td>
<td>24.0</td>
<td>23.45</td>
<td>0.1178</td>
<td>0.809</td>
</tr>
</tbody>
</table>

Mark 25 g02gbc

g02gbc.11 (last)