1 Purpose

nag_glm_normal (g02gac) fits a generalized linear model with normal errors.

2 Specification

```c
#include <nag.h>
#include <nagg02.h>

void nag_glm_normal (Nag_Link link, Nag_IncludeMean mean, Integer n,
                     const double x[], Integer tdx, Integer m, const Integer sx[],
                     Integer ip, const double y[], const double wt[], const double offset[],
                     double *scale, double ex_power, double *rss, double *df, double b[],
                     Integer *rank, double se[], double cov[], double v[], Integer tdv,
                     double tol, Integer max_iter, Integer print_iter, const char *outfile,
                     double eps, NagError *fail)
```

3 Description

A generalized linear model with Normal errors consists of the following elements:

(a) a set of $n$ observations, $y_i$, from a Normal distribution with probability density function:

$$\frac{1}{\sqrt{2\pi\sigma}}\exp\left(-\frac{(y - \mu)^2}{2\sigma^2}\right),$$

where $\mu$ is the mean and $\sigma^2$ is the variance.

(b) $X$, a set of $p$ independent variables for each observation, $x_1, x_2, \ldots, x_p$.

(c) a linear model:

$$\eta = \sum \beta_j x_j.$$

(d) a link between the linear predictor, $\eta$, and the mean of the distribution, $\mu$, i.e., $\eta = g(\mu)$. The possible link functions are:

(i) exponent link: $\eta = \mu^a$, for a constant $a$,

(ii) identity link: $\eta = \mu$,

(iii) log link: $\eta = \log \mu$,

(iv) square root link: $\eta = \sqrt{\mu}$,

(v) reciprocal link: $\eta = \frac{1}{\mu}$.

(e) a measure of fit, the residual sum of squares $= \sum (y_i - \hat{\mu}_i)^2$

The linear arguments are estimated by iterative weighted least squares. An adjusted dependent variable, $z$, is formed:

$$z = \eta + (y - \mu) \frac{d\eta}{d\mu}$$

and a working weight, $w$,.
At each iteration an approximation to the estimate of $\beta$, $\hat{\beta}$, is found by the weighted least squares regression of $z$ on $X$ with weights $w$.

nag_glm_normal (g02gac) finds a $QR$ decomposition of $w^2X$, i.e.,

$$w^2X = QR$$

where $R$ is a $p$ by $p$ triangular matrix and $Q$ is an $n$ by $p$ column orthogonal matrix.

If $R$ is of full rank, then $\hat{\beta}$ is the solution to:

$$R\hat{\beta} = Q^Tw^2z$$

If $R$ is not of full rank a solution is obtained by means of a singular value decomposition (SVD) of $R$.

$$R = Q_s\begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix}P^t,$$

where $D$ is a $k$ by $k$ diagonal matrix with nonzero diagonal elements, $k$ being the rank of $R$ and $w^2X$.

This gives the solution

$$\hat{\beta} = P_1D^{-1}\begin{pmatrix} Q_s & 0 \\ 0 & I \end{pmatrix}Q^Tw^2z$$

$P_1$ being the first $k$ columns of $P$, i.e., $P = (P_1P_0)$.

The iterations are continued until there is only a small change in the residual sum of squares.

The initial values for the algorithm are obtained by taking

$$\tilde{\eta} = g(y)$$

The fit of the model can be assessed by examining and testing the residual sum of squares, in particular comparing the difference in residual sums of squares between nested models, i.e., when one model is a sub-model of the other.

Let $RSS_f$ be the residual sum of squares for the full model with degrees of freedom $\nu_f$ and let $RSS_s$ be the residual sum of squares for the sub-model with degrees of freedom $\nu_s$ then:

$$F = \frac{(RSS_s - RSS_f)/\nu_f}{RSS_f/\nu_f},$$

has, approximately, a $F$-distribution with $(\nu_s - \nu_f), \nu_f$ degrees of freedom.

The parameter estimates, $\hat{\beta}$, are asymptotically Normally distributed with variance-covariance matrix:

$$C = R^{-1}R^{-\top}$$

in the full rank case, otherwise

$$C = P_1D^{-2}P_1^\top$$

The residuals and influence statistics can also be examined.

The estimated linear predictor $\tilde{\eta} = X\hat{\beta}$, can be written as $Hw^2z$ for an $n$ by $n$ matrix $H$. The $i$th diagonal elements of $H$, $h_i$, give a measure of the influence of the $i$th values of the independent variables on the fitted regression model. These are sometimes known as leverages.

The fitted values are given by $\hat{\mu} = g^{-1}(\tilde{\eta})$.

nag_glm_normal (g02gac) also computes the residuals, $r$:

$$r_i = y_i - \hat{\mu}_i$$
An option allows prior weights, \( \omega_i \), to be used, this gives a model with:

\[
\sigma_i^2 = \frac{\sigma^2}{\omega_i}
\]

In many linear regression models the first term is taken as a mean term or an intercept, i.e., \( x_{i,1} = 1 \), for \( i = 1, 2, \ldots, n \); this is provided as an option.

Often only some of the possible independent variables are included in a model, the facility to select variables to be included in the model is provided.

If part of the linear predictor can be represented by a variable with a known coefficient, then this can be included in the model by using an offset, \( o \):

\[
\eta = o + \sum \beta_j x_j.
\]

If the model is not of full rank the solution given will be only one of the possible solutions. Other estimates be may be obtained by applying constraints to the arguments. These solutions can be obtained by using \text{nag_glm_tran_model} (g02gkc) after using \text{nag_glm_normal} (g02gac). Only certain linear combinations of the arguments will have unique estimates; these are known as estimable functions and can be estimated and tested using \text{nag_glm_est_func} (g02gnc).

Details of the SVD, are made available, in the form of the matrix \( P^* \):

\[
P^* = \begin{pmatrix} D^{-1} P^T \\ P^T \end{pmatrix}.
\]

4 References

Cook R D and Weisberg S (1982) \textit{Residuals and Influence in Regression} Chapman and Hall


5 Arguments

1: \textbf{link} \hspace{0.5cm} \textit{Input}

\textit{On entry:} indicates which link function is to be used.

- \textbf{link} = \text{Nag_Expo}
  An exponent link is used.

- \textbf{link} = \text{Nag_Iden}
  An identity link is used. You are advised not to use \text{nag_glm_normal} (g02gac) with an identity link as \text{nag_regsn_mult_linear} (g02dac) provides a more efficient way of fitting such a model.

- \textbf{link} = \text{Nag_Log}
  A log link is used.

- \textbf{link} = \text{Nag_Sqrt}
  A square root link is used.

- \textbf{link} = \text{Nag_Reci}
  A reciprocal link is used.

\textit{Constraint:} \textbf{link} = \text{Nag_Expo, Nag_Iden, Nag_Log, Nag_Sqrt or Nag_Reci}.

2: \textbf{mean} \hspace{0.5cm} \textit{Input}

\textit{On entry:} indicates if a mean term is to be included.

- \textbf{mean} = \text{Nag_MeanInclude}
  A mean term, (intercept), will be included in the model.
mean = Nag_MeanZero
The model will pass through the origin, zero point.

Constraint: mean = Nag_MeanInclude or Nag_MeanZero.

3: \( n \) – Integer
   \textit{Input}
   \textit{On entry:} the number of observations, \( n \).
   \textit{Constraint:} \( n \geq 2 \).

4: \( x[n \times tdx] \) – const double
   \textit{Input}
   \textit{On entry:} \( x[(i-1) \times tdx + j - 1] \) must contain the \( i \)th observation for the \( j \)th independent variable, for \( i = 1, 2, \ldots, n \) and \( j = 1, 2, \ldots, m \).

5: \( tdx \) – Integer
   \textit{Input}
   \textit{On entry:} the stride separating matrix column elements in the array \( x \).
   \textit{Constraint:} \( tdx \geq m \).

6: \( m \) – Integer
   \textit{Input}
   \textit{On entry:} the total number of independent variables.
   \textit{Constraint:} \( m \geq 1 \).

7: \( sx[m] \) – const Integer
   \textit{Input}
   \textit{On entry:} indicates which independent variables are to be included in the model. If \( sx[j-1] > 0 \), then the variable contained in the \( j \)th column of \( x \) is included in the regression model.
   \textit{Constraints:}
   \begin{align*}
   sx[j-1] &\geq 0, \text{ for } j = 1, 2, \ldots, m; \\
   \text{if } mean & = \text{Nag_MeanInclude}, \text{ then exactly } ip - 1 \text{ values of } sx \text{ must be } > 0; \\
   \text{if } mean & = \text{Nag_MeanZero}, \text{ then exactly } ip \text{ values of } sx \text{ must be } > 0.
   \end{align*}

8: \( ip \) – Integer
   \textit{Input}
   \textit{On entry:} the number \( p \) of independent variables in the model, including the mean or intercept if present.
   \textit{Constraint:} \( ip > 0 \).

9: \( y[n] \) – const double
   \textit{Input}
   \textit{On entry:} observations on the dependent variable, \( y_i \), for \( i = 1, 2, \ldots, n \).

10: \( wt[n] \) – const double
    \textit{Input}
    \textit{On entry:} if weighted estimates are required, then \( wt \) must contain the weights to be used. Otherwise \( wt \) need not be defined and may be set to NULL.
    If \( wt[i-1] = 0.0 \), then the \( i \)th observation is not included in the model, in which case the effective number of observations is the number of observations with positive weights.
    If \( wt \) is NULL, then the effective number of observations is \( n \).
    \textit{Constraint:} \( wt \) is NULL or \( wt[i-1] \geq 0.0 \), for \( i = 1, 2, \ldots, n \).

11: \( offset[n] \) – const double
    \textit{Input}
    \textit{On entry:} if an offset is required then \( offset \) must contain the values of the offset \( o \). Otherwise \( offset \) must be supplied as NULL.
12:  \textbf{scale} – double * \\
\textit{Input/Output}

On entry: indicates the scale argument for the model, $\sigma^2$. If \textbf{scale} = 0.0, then the scale argument is estimated using the residual mean square.

On exit: if on input \textbf{scale} = 0.0, then \textbf{scale} contains the estimated value of the scale argument, $\hat{\sigma}^2$. If on input \textbf{scale} $\neq$ 0.0, then \textbf{scale} is unchanged on exit.

\textbf{Constraint}: \textbf{scale} $\geq$ 0.0.

13:  \textbf{ex\_power} – double \\
\textit{Input}

On entry: if \textbf{link} = Nag\_Exp then \textbf{ex\_power} must contain the power $\alpha$ of the exponential.

If \textbf{link} $\neq$ Nag\_Exp, \textbf{ex\_power} is not referenced.

\textbf{Constraint}: If \textbf{link} = Nag\_Exp, \textbf{ex\_power} $\neq$ 0.0.

14:  \textbf{rss} – double * \\
\textit{Output}

On exit: the residual sum of squares for the fitted model.

15:  \textbf{df} – double * \\
\textit{Output}

On exit: the degrees of freedom associated with the residual sum of squares for the fitted model.

16:  \textbf{b[ip]} – double \\
\textit{Output}

On exit: $\textbf{b}[i-1]$, $i = 1,2,\ldots,\textbf{ip}$ contains the estimates of the arguments of the generalized linear model, $\hat{\beta}$.

If \textbf{mean} = Nag\_MeanInclude, then $\textbf{b}[0]$ will contain the estimate of the mean argument and $\textbf{b}[i]$ will contain the coefficient of the variable contained in column $j$ of \textbf{x}, where $\textbf{sx}[j-1]$ is the $i$th positive value in the array \textbf{sx}.

If \textbf{mean} = Nag\_MeanZero, then $\textbf{b}[i-1]$ will contain the coefficient of the variable contained in column $j$ of \textbf{x}, where $\textbf{sx}[j-1]$ is the $i$th positive value in the array \textbf{sx}.

17:  \textbf{rank} – Integer * \\
\textit{Output}

On exit: the rank of the independent variables.

If the model is of full rank, then \textbf{rank} = \textbf{ip}.

If the model is not of full rank, then \textbf{rank} is an estimate of the rank of the independent variables. \textbf{rank} is calculated as the number of singular values greater than $\textbf{eps}\times$ (largest singular value). It is possible for the SVD to be carried out but \textbf{rank} to be returned as \textbf{ip}.

18:  \textbf{se[ip]} – double \\
\textit{Output}

On exit: the standard errors of the linear arguments.

$\textbf{se}[i-1]$ contains the standard error of the parameter estimate in $\textbf{b}[i-1]$, for $i = 1,2,\ldots,\textbf{ip}$.

19:  \textbf{cov[ip \times (ip + 1)/2]} – double \\
\textit{Output}

On exit: the $\textbf{ip} \times (\textbf{ip} + 1)/2$ elements of \textbf{cov} contain the upper triangular part of the variance-covariance matrix of the $\textbf{ip}$ parameter estimates given in \textbf{b}. They are stored packed by column, i.e., the covariance between the parameter estimate given in $\textbf{b}[i]$ and the parameter estimate given in $\textbf{b}[j]$, $j \geq i$, is stored in $\textbf{cov}[j(j + 1)/2 + i]$, for $i = 0,1,\ldots,\textbf{ip} - 1$ and $j = i,\ldots,\textbf{ip} - 1$.

20:  \textbf{v[n \times tdv]} – double \\
\textit{Output}

On exit: auxiliary information on the fitted model.

$\textbf{v}[(i - 1) \times \textbf{tdv}]$, contains the linear predictor value, $\eta$, for $i = 1,2,\ldots,n$.

$\textbf{v}[(i - 1) \times \textbf{tdv} + 1]$, contains the fitted value, $\hat{\mu}$, for $i = 1,2,\ldots,n$. 

\textit{Mark 25}
The function $v[(i-1) \times tdv + 2]$, is only included for consistency with other functions. $v[(i-1) \times tdv + 2] = 1.0$, for $i = 1, 2, \ldots, n$.

$v[(i-1) \times tdv + 3]$, contains the working weight, $w_i$, for $i = 1, 2, \ldots, n$.

$v[(i-1) \times tdv + 4]$, contains the standardized residual, $r_i$, for $i = 1, 2, \ldots, n$.

$v[(i-1) \times tdv + 5]$, contains the leverage, $h_i$, for $i = 1, 2, \ldots, n$.

$v[(i-1) \times tdv + j - 1]$, for $j = 7, 8, \ldots, ip + 6$, contains the results of the QR decomposition or the singular value decomposition.

If the model is not of full rank, i.e., rank $< ip$, then the first ip rows of columns 7 to ip + 6 contain the $P^T$ matrix.

21: $tdv$ – Integer

On entry: the stride separating matrix column elements in the array $v$.

Constraint: $tdv \geq ip + 6$.

22: $tol$ – double

On entry: indicates the accuracy required for the fit of the model.

The iterative weighted least squares procedure is deemed to have converged if the absolute change in deviance between interactions is less than $tol \times (1.0 + \text{current residual sum of squares})$. This is approximately an absolute precision if the residual sum of squares is small and a relative precision if the residual sum of squares is large.

If $0.0 \leq tol < \text{machine precision}$, then the function will use $10 \times \text{machine precision}$.

Constraint: $tol \geq 0.0$.

23: $max\_iter$ – Integer

On entry: the maximum number of iterations for the iterative weighted least squares. If $max\_iter = 0$, then a default value of 10 is used.

Constraint: $max\_iter \geq 0$.

24: $print\_iter$ – Integer

On entry: indicates if the printing of information on the iterations is required and the rate at which printing is produced. The following values are available:

- $print\_iter \leq 0$
  - There is no printing.

- $print\_iter > 0$
  - The following items are printed every $print\_iter$ iterations:
    - (i) the deviance,
    - (ii) the current estimates, and
    - (iii) if the weighted least squares equations are singular then this is indicated.

25: $outfile$ – const char *

On entry: a null terminated character string giving the name of the file to which results should be printed. If $outfile$ is NULL or an empty string then the stdout stream is used. Note that the file will be opened in the append mode.

26: $eps$ – double

On entry: the value of $eps$ is used to decide if the independent variables are of full rank and, if not, what the rank of the independent variables is. The smaller the value of $eps$ the stricter the criterion for selecting the singular value decomposition.
If $0.0 \leq \epsilon < \text{machine precision}$, then the function will use \text{machine precision} instead.

Constraint: $\epsilon \geq 0.0$.

27: \textbf{fail} – NagError

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

\textbf{NE_2_INT_ARG_LT}

On entry, $\text{tdv} = \langle \text{value} \rangle$ while $\text{ip} = \langle \text{value} \rangle$. These arguments must satisfy $\text{tdv} \geq \text{ip} + 6$.

On entry, $\text{tdx} = \langle \text{value} \rangle$ while $\text{m} = \langle \text{value} \rangle$. These arguments must satisfy $\text{tdx} \geq \text{m}$.

\textbf{NE_ALLOC_FAIL}

Dynamic memory allocation failed.

\textbf{NE_BAD_PARAM}

On entry, argument $\text{link}$ had an illegal value.

On entry, argument $\text{mean}$ had an illegal value.

\textbf{NE_INT_ARG_LT}

On entry, $\text{ip} = \langle \text{value} \rangle$.

Constraint: $\text{ip} \geq 1$.

On entry, $\text{m} = \langle \text{value} \rangle$.

Constraint: $\text{m} \geq 1$.

On entry, $\text{max_iter}$ must not be less than 0: $\text{max_iter} = \langle \text{value} \rangle$.

On entry, $\text{n} = \langle \text{value} \rangle$.

Constraint: $\text{n} \geq 2$.

On entry, $\text{sx}[\langle \text{value} \rangle]$ must not be less than 0: $\text{sx}[\langle \text{value} \rangle] = \langle \text{value} \rangle$.

\textbf{NE_IP_GT_OBSERV}

Argument $\text{ip}$ is greater than the effective number of observations.

\textbf{NE_IP_INCOMP_SX}

Argument $\text{ip}$ is incompatible with arguments $\text{mean}$ and $\text{sx}$.

\textbf{NE_LSQ_ITER_NOT_CONV}

The iterative weighted least squares has failed to converge in $\text{max_iter} = \langle \text{value} \rangle$ iterations. The value of $\text{max_iter}$ could be increased but it may be advantageous to examine the convergence using the print_iter option. This may indicate that the convergence is slow because the solution is at a boundary in which case it may be better to reformulate the model.

\textbf{NE_NOT_APPEND_FILE}

Cannot open file $\langle \text{string} \rangle$ for appending.

\textbf{NE_NOT_CLOSE_FILE}

Cannot close file $\langle \text{string} \rangle$. 

Mark 25
**NE_RANK_CHANGED**

The rank of the model has changed during the weighted least squares iterations. The estimate for $\beta$ returned may be reasonable, but you should check how the deviance has changed during iterations.

**NE_REAL_ARG_LT**

On entry, *eps* must not be less than 0.0: $\text{eps} = \langle\text{value}\rangle$.
On entry, *scale* must not be less than 0.0: $\text{scale} = \langle\text{value}\rangle$.
On entry, *tol* must not be less than 0.0: $\text{tol} = \langle\text{value}\rangle$.
On entry, $\text{wt}[\langle\text{value}\rangle]$ must not be less than 0.0: $\text{wt}[\langle\text{value}\rangle] = \langle\text{value}\rangle$.

**NE_REAL_ENUM_ARG_CONS**

On entry, *ex_power* = 0.0, *link* = Nag_Expo. These arguments must satisfy $\text{link} = \text{Nag}_{\text{Expo}}$ and $\text{ex}_{\text{power}} \neq 0.0$.

**NE_SVD_NOT_CONV**

The singular value decomposition has failed to converge.

**NE_VALUE_AT_BOUNDARY_A**

A fitted value is at a boundary. This will only occur with $\text{link} = \text{Nag}_{\text{Expo}}$, $\text{Nag}_{\text{Log}}$ or $\text{Nag}_{\text{Reci}}$. This may occur if there are small values of $y$ and the model is not suitable for the data. The model should be reformulated with, perhaps, some observations dropped.

**NE_ZERO_DOF_ERROR**

The degrees of freedom for error are 0. A saturated model has been fitted.

**7 Accuracy**

The accuracy is determined by *tol* as described in Section 5. As the residual sum of squares is a function of $\mu^2$ the accuracy of the $\beta$'s will depend on the link used and may be of the order $\sqrt{\text{tol}}$.

**8 Parallelism and Performance**

Not applicable.

**9 Further Comments**

None.

**10 Example**

The model:

$$y = \frac{1}{\beta_1 + \beta_2 x} + \epsilon$$

for a sample of five observations.
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <ctype.h>
#include <nagg02.h>

#define X(I, J) x[(I) *tdx + J]
#define V(I, J) v[(I) *tdv + J]

int main(void)
{
    Integer exit_status = 0, i, ip, j, m, max_iter, n, print_iter, rank;
    Integer *sx = 0;
    Integer tdv, tdx;
    Nag_InflateMean mean;
    Nag_Link link;
    Nag_Boolean weight;
    char nag_enum_arg[40];
    double df, eps, ex_power, rss, scale, tol;
    double *b = 0, *cov = 0, *offsetptr = 0, *se = 0, *v = 0, *wt = 0;
    double *wtptr, *x = 0, *y = 0;
    NagError fail;

    INIT_FAIL(fail);

    printf("nag_glm_normal (g02gac) Example Program Results\n");
    /* Skip heading in data file */
    #ifdef _WIN32
    scanf_s("%*[\n]");
    #else
    scanf("%*[\n]");
    #endif
    #ifdef _WIN32
    scanf_s("%39s", nag_enum_arg, _countof(nag_enum_arg));
    #else
    scanf("%39s", nag_enum_arg);}
    #endif
    /* nag_enum_name_to_value (x04nac).*
    * Converts NAG enum member name to value
    */
    link = (Nag_Link) nag_enum_name_to_value(nag_enum_arg);
    #ifdef _WIN32
    scanf_s("%39s", nag_enum_arg, _countof(nag_enum_arg));
    #else
    scanf("%39s", nag_enum_arg);
    #endif
    /* nag_enum_name_to_value (x04nac).
    * Converts NAG enum member name to value
    */
    mean = (Nag_InflateMean) nag_enum_name_to_value(nag_enum_arg);
    #ifdef _WIN32
    scanf_s("%39s", nag_enum_arg, _countof(nag_enum_arg));
    #else
    scanf("%39s", nag_enum_arg);
    #endif
    /* nag_enum_name_to_value (x04nac).
    * Converts NAG enum member name to value
    */
    weight = (Nag_Boolean) nag_enum_name_to_value(nag_enum_arg);
    #ifdef _WIN32
    scanf_s("%NAG_IPMT" "%NAG_IPMT" "%NAG_IPMT" %lf", &n, &m, &print_iter, &scale);
    #else
    scanf("%NAG_IPMT" "%NAG_IPMT" "%NAG_IPMT" %lf", &n, &m, &print_iter, &scale);
    #endif
}
if (n >= 2 && m >= 1)
{
    if (!(wt = NAG_ALLOC(n, double)) ||
        !(x = NAG_ALLOC(n*m, double)) ||
        !(y = NAG_ALLOC(n, double)) ||
        !(sx = NAG_ALLOC(m, Integer)))
    {
        printf("Allocation failure\n");
        exit_status = -1;
        goto END;
    }
    tdx = m;
} else
{
    printf("Invalid n or m.\n");
    exit_status = 1;
    return exit_status;
}
if (weight)
{
    wtptr = wt;
    for (i = 0; i < n; i++)
    {
        for (j = 0; j < m; j++)
            #ifdef _WIN32
                scanf_s("%lf", &X(i, j));
            #else
                scanf("%lf", &X(i, j));
            #endif
            #ifdef _WIN32
                scanf_s("%lf%lf", &y[i], &wt[i]);
            #else
                scanf("%lf%lf", &y[i], &wt[i]);
            #endif
    }
} else
{
    wtptr = (double *) 0;
    for (i = 0; i < n; i++)
    {
        for (j = 0; j < m; j++)
            #ifdef _WIN32
                scanf_s("%lf", &X(i, j));
            #else
                scanf("%lf", &X(i, j));
            #endif
            #ifdef _WIN32
                scanf_s("%lf", &y[i]);
            #else
                scanf("%lf", &y[i]);
            #endif
    }
}
for (j = 0; j < m; j++)
    #ifdef _WIN32
        scanf_s("%"NAG_IFMT"", &sx[j]);
    #else
        scanf("%"NAG_IFMT"", &sx[j]);
    #endif
/* Calculate ip */
ip = 0;
for (j = 0; j < m; j++)
    if (sx[j] > 0) ip += 1;
    if (mean == Nag_MeanInclude)
        ip += 1;
    if (link == Nag_Expo)
        #ifdef _WIN32
            scanf_s("%NAG_IFMT"", &sx[j]);
        #else
            scanf("%NAG_IFMT"", &sx[j]);
        #endif
}
scanf_s("%lf", &ex_power);
#else
scanf("%lf", &ex_power);
#endif
else
    ex_power = 0.0;

if (!(b = NAG_ALLOC(ip, double)) ||
    !(v = NAG_ALLOC(n*(ip+6), double)) ||
    !(se = NAG_ALLOC(ip, double)) ||
    !(cov = NAG_ALLOC(ip*(ip+1)/2, double)))
{
    printf("Allocation failure\n");
    exit_status = -1;
    goto END;
}

tdv = ip+6;

/* Set other control parameters */
max_iter = 10;
tol = 5e-5;
eps = 1e-6;

/* nag_glm_normal (g02gac).
* Fits a generalized linear model with Normal errors
*/
if (fail.code == NE_NOERROR || fail.code == NE_LSQ_ITER_NOT_CONV ||
    fail.code == NE_RANK_CHANGED || fail.code == NE_ZERO_DOF_ERROR)
{
    if (fail.code != NE_NOERROR) {
        printf("Error from nag_glm_normal (g02gac).\n", fail.message);
    }
    printf("\nResidual sum of squares = %13.4e\n", rss);
    printf("Degrees of freedom = %3.1f\n", df);
    for (i = 0; i < ip; i++)
    {
        printf("%14.4f%14.4f\n", b[i], se[i]);
    }
    printf("\n");
    for (i = 0; i < n; ++i)
    {
        printf("%7.1f%10.2f%12.4f%10.3f\n", y[i], V(i, 1), V(i, 4),
                V(i, 5));
    }
}
else
{
    printf("Error from nag_glm_normal (g02gac).\n", fail.message);
    exit_status = 1;
    goto END;
}

END:
NAG_FREE(wt);
NAG_FREE(x);
NAG_FREE(y);
NAG_FREE(sx);
NAG_FREE(b);
NAG_FREE(v);
NAG_FREE(se);
NAG_FREE(cov);
return exit_status;
10.2 Program Data

nag_glm_normal (g02gac) Example Program Data
Nag_Reci Nag_MeanInclude Nag_FALSE 5 1 0 0.0
1.0 25.0
2.0 10.0
3.0 6.0
4.0 4.0
5.0 3.0
1

10.3 Program Results

nag_glm_normal (g02gac) Example Program Results

Residual sum of squares = 3.8717e-01
Degrees of freedom = 3.0

<table>
<thead>
<tr>
<th>Estimate</th>
<th>Standard error</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.0239</td>
<td>0.0028</td>
</tr>
<tr>
<td>0.0638</td>
<td>0.0026</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>y</th>
<th>fitted value</th>
<th>Residual</th>
<th>Leverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.0</td>
<td>25.04</td>
<td>-0.0387</td>
<td>0.995</td>
</tr>
<tr>
<td>10.0</td>
<td>9.64</td>
<td>0.3613</td>
<td>0.458</td>
</tr>
<tr>
<td>6.0</td>
<td>5.97</td>
<td>0.0320</td>
<td>0.268</td>
</tr>
<tr>
<td>4.0</td>
<td>4.32</td>
<td>-0.3221</td>
<td>0.167</td>
</tr>
<tr>
<td>3.0</td>
<td>3.39</td>
<td>-0.3878</td>
<td>0.112</td>
</tr>
</tbody>
</table>