NAG Library Function Document

nag_corr_cov (g02bxc)

1 Purpose
nag_corr_cov (g02bxc) calculates the Pearson product-moment correlation coefficients and the variance-
covariance matrix for a set of data. Weights may be used.

2 Specification
#include <nag.h>
#include <nagg02.h>
void nag_corr_cov (Integer n, Integer m, const double x[], Integer tdx,
const Integer sx[], const double wt[], double *sw, double wmean[],
double std[], double r[], Integer tdr, double v[], Integer tdv,
NagError *fail)

3 Description
For \(n\) observations on \(m\) variables the one-pass algorithm of West (1979) as implemented in
nag_sum_sqs (g02buc) is used to compute the means, the standard deviations, the variance-
covariance matrix, and the Pearson product-moment correlation matrix for \(p\) selected variables. Suitable
weights may be used to indicate multiple observations and to remove missing values. The quantities are defined
by:

(a) The means
\[
\bar{x}_j = \frac{\sum_{i=1}^{n} w_i x_{ij}}{\sum_{i=1}^{n} w_i} \quad j = 1, \ldots, p
\]

(b) The variance-covariance matrix
\[
C_{jk} = \frac{\sum_{i=1}^{n} w_i (x_{ij} - \bar{x}_j)(x_{ik} - \bar{x}_k)}{\sum_{i=1}^{n} w_i - 1} \quad j, k = 1, \ldots, p
\]

(c) The standard deviations
\[
s_j = \sqrt{C_{jj}} \quad j = 1, \ldots, p
\]

(d) The Pearson product-moment correlation coefficients
\[
R_{jk} = \frac{C_{jk}}{\sqrt{C_{jj}C_{kk}}} \quad j, k = 1, \ldots, p
\]

where \(x_{ij}\) is the value of the \(i\)th observation on the \(j\)th variable and \(w_i\) is the weight for the \(i\)th
observation which will be 1 in the unweighted case.

Note that the denominator for the variance-covariance is \(\sum_{i=1}^{n} w_i - 1\), so the weights should be scaled so
that the sum of weights reflects the true sample size.
4 References

5 Arguments
1: \textbf{n} – Integer \hspace{1cm} \textit{Input}
\textit{On entry:} the number of observations in the dataset, \(n \).
\textit{Constraint:} \(n > 1 \).

2: \textbf{m} – Integer \hspace{1cm} \textit{Input}
\textit{On entry:} the total number of variables, \(m \).
\textit{Constraint:} \(m \geq 1 \).

3: \textbf{x[n \times tdx]} – const double \hspace{1cm} \textit{Input}
\textit{On entry:} the data \(x[(i-1) \times tdx + j-1] \) must contain the \(i \)th observation on the \(j \)th variable, \(x_{ij} \), for \(i = 1,2,\ldots,n \) and \(j = 1,2,\ldots,m \).

4: \textbf{tdx} – Integer \hspace{1cm} \textit{Input}
\textit{On entry:} the stride separating matrix column elements in the array \(x \).
\textit{Constraint:} \(tdx \geq m \).

5: \textbf{sx[m]} – const Integer \hspace{1cm} \textit{Input}
\textit{On entry:} indicates which \(p \) variables to include in the analysis.
\(sx[j-1] > 0 \) \hspace{1cm} The \(j \)th variable is to be included.
\(sx[j-1] = 0 \) \hspace{1cm} The \(j \)th variable is not to be included.
\textbf{sx} is set to NULL.
All variables are included in the analysis, i.e., \(p = m \).
\textit{Constraint:} \(sx[i] \geq 0 \), for \(i = 1,2,\ldots,m \).

6: \textbf{wt[n]} – const double \hspace{1cm} \textit{Input}
\textit{On entry:} \(w \), the optional frequency weighting for each observation, with \(wt[i-1] = w_i \). Usually \(w_i \) will be an integral value corresponding to the number of observations associated with the \(i \)th data value, or zero if the \(i \)th data value is to be ignored. If \(wt \) is NULL then \(w_i \) is set to 1 for all \(i \).
\textit{Constraint:} if \(wt \) is not NULL, \(\sum_{i=1}^{n} wt[i-1] > 1.0 \), \(wt[i-1] \geq 0.0 \), for \(i = 1,2,\ldots,n \).

7: \textbf{sw} – double * \hspace{1cm} \textit{Output}
\textit{On exit:} the sum of weights if \(wt \) is not NULL, otherwise \textbf{sw} contains the number of observations, \(n \).

8: \textbf{wmean[m]} – double \hspace{1cm} \textit{Output}
\textit{On exit:} the sample means. \(wmean[j-1] \) contains the mean for the \(j \)th variable.
9: \(\text{std}[\text{m}]\) – double

\textit{Output}

On exit: the standard deviations. \(\text{std}[j-1]\) contains the standard deviation for the \(j\)th variable.

10: \(\text{r}[\text{m} \times \text{tdr}]\) – double

\textit{Output}

On exit: the matrix of Pearson product-moment correlation coefficients. \(\text{r}[(j-1) \times \text{tdr} + k - 1]\) contains the correlation between variables \(j\) and \(k\), for \(j, k = 1, \ldots, p\).

11: \(\text{tdr}\) – Integer

\textit{Input}

On entry: the stride separating matrix column elements in the array \(\text{r}\).

\textit{Constraint:} \(\text{tdr} \geq \text{m}\).

12: \(\text{v}[\text{m} \times \text{tdv}]\) – double

\textit{Output}

On exit: the variance-covariance matrix. \(\text{v}[(j-1) \times \text{tdv} + k - 1]\) contains the covariance between variables \(j\) and \(k\), for \(j, k = 1, \ldots, p\).

13: \(\text{tdv}\) – Integer

\textit{Input}

On entry: the stride separating matrix column elements in the array \(\text{v}\).

\textit{Constraint:} \(\text{tdv} \geq \text{m}\).

14: \(\text{fail}\) – NagError*

\textit{Input/Output}

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_2_INT_ARG_LT

On entry, \(\text{tdr} = \langle\text{value}\rangle\) while \(\text{m} = \langle\text{value}\rangle\).

The arguments must satisfy \(\text{tdr} \geq \text{m}\).

On entry, \(\text{tdv} = \langle\text{value}\rangle\) while \(\text{m} = \langle\text{value}\rangle\). These arguments must satisfy \(\text{tdv} \geq \text{m}\).

On entry, \(\text{tdx} = \langle\text{value}\rangle\) while \(\text{m} = \langle\text{value}\rangle\). These arguments must satisfy \(\text{tdx} \geq \text{m}\).

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_INT_ARG_LE

On entry, \(\text{n} = \langle\text{value}\rangle\).

NE_INT_ARG_LT

On entry, \(\text{m} = \langle\text{value}\rangle\).

\textit{Constraint:} \(\text{m} \geq 1\).

NE_NEG_SX

On entry, at least one element of \(\text{sx}\) is negative.

NE_NEG_WEIGHT

On entry, at least one of the weights is negative.

NE_POS_SX

On entry, no element of \(\text{sx}\) is positive.
On entry, the sum of weights is less than 1.0.

A variable has zero variance.
At least one variable has zero variance. In this case \(v \) and \(\text{std} \) are as calculated, but \(r \) will contain zero for any correlation involving a variable with zero variance.

7 Accuracy

For a discussion of the accuracy of the one pass algorithm see Chan et al. (1982) and West (1979).

8 Parallelism and Performance

Not applicable.

9 Further Comments

Correlation coefficients based on ranks can be computed using \texttt{nag ken spe corr coeff} (g02brc).

10 Example

A program to calculate the means, standard deviations, variance-covariance matrix and a matrix of Pearson product-moment correlation coefficients for a set of 3 observations of 3 variables.

10.1 Program Text

```c
/* \texttt{nag corr cov (g02bxc)} Example Program. */
/* Copyright 2014 Numerical Algorithms Group. */
/* Mark 3, 1992. */
/* Mark 8 revised, 2004. */
/
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagg02.h>

#define X(I, J) x[(I) *tdx + J]
#define R(I, J) r[(I) *tdr + J]
#define V(I, J) v[(I) *tdv + J]

int main(void)
{
    Integer exit_status = 0, i, j, m, n, tdr, tdv, tdx, test;
    NagError fail;
    char w;
    double *r = 0, *std = 0, sw, *v = 0, *wmean = 0, *wt = 0, *wtptr, *x = 0;

    INIT_FAIL(fail);

    printf("\texttt{nag corr cov (g02bxc)} Example Program Results\n");

    /* Skip heading in data file */
    #ifdef _WIN32
    scanf_s("%*[\n]");
    #else
    scanf("%*[\n]");
    #endif

    test = 0;
    #ifdef _WIN32
    g02bxc
```

NE_SW_LT_ONE

On entry, the sum of weights is less than 1.0.

NE_VAR_EQ_ZERO

A variable has zero variance.
At least one variable has zero variance. In this case \(v \) and \(\text{std} \) are as calculated, but \(r \) will contain zero for any correlation involving a variable with zero variance.

7 Accuracy

For a discussion of the accuracy of the one pass algorithm see Chan et al. (1982) and West (1979).

8 Parallelism and Performance

Not applicable.

9 Further Comments

Correlation coefficients based on ranks can be computed using \texttt{nag ken spe corr coeff} (g02brc).

10 Example

A program to calculate the means, standard deviations, variance-covariance matrix and a matrix of Pearson product-moment correlation coefficients for a set of 3 observations of 3 variables.

10.1 Program Text

```c
/* \texttt{nag corr cov (g02bxc)} Example Program. */
/* Copyright 2014 Numerical Algorithms Group. */
/* Mark 3, 1992. */
/* Mark 8 revised, 2004. */
/
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagg02.h>

#define X(I, J) x[(I) *tdx + J]
#define R(I, J) r[(I) *tdr + J]
#define V(I, J) v[(I) *tdv + J]

int main(void)
{
    Integer exit_status = 0, i, j, m, n, tdr, tdv, tdx, test;
    NagError fail;
    char w;
    double *r = 0, *std = 0, sw, *v = 0, *wmean = 0, *wt = 0, *wtptr, *x = 0;

    INIT_FAIL(fail);

    printf("\texttt{nag corr cov (g02bxc)} Example Program Results\n");

    /* Skip heading in data file */
    #ifdef _WIN32
    scanf_s("%*[\n]");
    #else
    scanf("%*[\n]");
    #endif

    test = 0;
    #ifdef _WIN32
```
while ((scanf_s("%"NAG_IFMT"%"NAG_IFMT" %c", &m, &n, &w, 1) != EOF))
#else
while ((scanf("%"NAG_IFMT"%"NAG_IFMT" %c", &m, &n, &w) != EOF))
#endif
{
 if (m >= 1 && n >= 1)
 {
 if (!(x = NAG_ALLOC(n*m, double)) ||
 !(r = NAG_ALLOC(m*m, double)) ||
 !(v = NAG_ALLOC(m*m, double)) ||
 !(wt = NAG_ALLOC(n, double)) ||
 !(wmean = NAG_ALLOC(m, double)) ||
 !(std = NAG_ALLOC(m, double)))
 {
 printf("Allocation failure\n");
 exit_status = -1;
 goto END;
 }
 tdx = m;
 tdr = m;
 tdv = m;
 }
 else
 {
 printf("Invalid m or n.\n");
 exit_status = 1;
 return exit_status;
 }
#endif
 for (i = 0; i < n; i++)
#endif _WIN32
 scanf_s("%lf", &wt[i]);
#else
 scanf("%lf", &wt[i]);
#endif
 for (i = 0; i < n; i++)
 for (j = 0; j < m; j++)
#endif _WIN32
 scanf_s("%lf", &X(i, j));
#else
 scanf("%lf", &X(i, j));
#endif
 if (w == 'w')
 wtptr = wt;
 else
 wtptr = (double *) 0;

 /* nag_corr_cov (g02bxc).
 * Product-moment correlation, unweighted/weighted
 * correlation and covariance matrix, allows variables to be
 * disregarded
 */
 nag_corr_cov(n, m, x, tdx, (Integer *) 0, wtptr, &sw, wmean, std,
 tdr, v, tdv, &fail);
 if (fail.code != NE_NOERROR)
 {
 printf("Error from nag_corr_cov (g02bxc).\n%\s\n", fail.message);
 exit_status = 1;
 goto END;
 }
 if (wtptr)
 printf("\nCase %"NAG_IFMT" --- Using weights\n", ++test);
 else
 printf("\nCase %"NAG_IFMT" --- Not using weights\n", ++test);
 printf("\nInput data\n");
 for (i = 0; i < n; i++)
 printf("%6.1f%6.1f%6.1f%6.1f\n",}
X(i, 0), X(i, 1), X(i, 2), wt[i]);

printf("\n");
printf("Sample means.\n");
for (i = 0; i < m; i++)
 printf("%6.1f\n", wmean[i]);
printf("\nStandard deviation.\n");
for (i = 0; i < m; i++)
 printf("%6.1f\n", std[i]);

printf("Correlation matrix.\n");
for (i = 0; i < m; i++)
{
 for (j = 0; j < m; j++)
 printf(" %7.4f ", R(i, j));
 printf("\n");
}

printf("Variance matrix.\n");
for (i = 0; i < m; i++)
{
 for (j = 0; j < m; j++)
 printf(" %7.3f ", V(i, j));
 printf("\n");
}
printf("Sum of weights %6.1f\n", sw);

END:
NAG_FREE(x);
NAG_FREE(r);
NAG_FREE(v);
NAG_FREE(wt);
NAG_FREE(wmean);
NAG_FREE(std);
}
return exit_status;

10.2 Program Data

nag_corr_cov (g02bxc) Example Program Data
3 3 w
9.1231 3.7011 4.5230
0.9310 0.0900 0.8870
0.0009 0.0099 0.0999
0.1300 1.3070 0.3700

3 3 w
0.1300 1.3070 0.3700
9.1231 3.7011 4.5230
0.9310 0.0900 0.8870
0.0009 0.0099 0.0999

3 3 u
0.717 9.370 0.013
1.119 0.133 9.700
11.100 23.510 11.117
0.900 9.013 8.710

3 3 w
0.717 19.370 0.013
1.119 0.133 9.700
11.100 23.510 11.117
0.900 9.013 78.710

3 3 u
0.717 19.370 0.013
1.119 0.133 9.700
11.100 3.510 13.117
0.900 0.013 78.710
10.3 Program Results

nag_corr_cov (g02bxc) Example Program Results

Case 1 --- Using weights

Input data

\[
\begin{array}{cccc}
0.9 & 0.1 & 0.9 & 9.1 \\
0.0 & 0.0 & 0.1 & 3.7 \\
0.1 & 1.3 & 0.4 & 4.5 \\
\end{array}
\]

Sample means.

0.5
0.4
0.6

Standard deviation.

0.4
0.6
0.3

Correlation matrix.

\[
\begin{array}{ccc}
1.0000 & -0.4932 & 0.9839 \\
-0.4932 & 1.0000 & -0.3298 \\
0.9839 & -0.3298 & 1.0000 \\
\end{array}
\]

Variance matrix.

\[
\begin{array}{ccc}
0.197 & -0.123 & 0.149 \\
-0.123 & 0.316 & -0.063 \\
0.149 & -0.063 & 0.117 \\
\end{array}
\]

Sum of weights 17.3

Case 2 --- Using weights

Input data

\[
\begin{array}{cccc}
9.1 & 3.7 & 4.5 & 0.1 \\
0.9 & 0.1 & 0.9 & 1.3 \\
0.0 & 0.0 & 0.1 & 0.4 \\
\end{array}
\]

Sample means.

1.3
0.3
1.0

Standard deviation.

3.3
1.4
1.5

Correlation matrix.

\[
\begin{array}{ccc}
1.0000 & 0.9908 & 0.9903 \\
0.9908 & 1.0000 & 0.9624 \\
0.9903 & 0.9624 & 1.0000 \\
\end{array}
\]

Variance matrix.

\[
\begin{array}{ccc}
10.851 & 4.582 & 5.044 \\
4.582 & 1.971 & 2.089 \\
5.044 & 2.089 & 2.391 \\
\end{array}
\]

Sum of weights 1.8

Case 3 --- Not using weights

3 3 w

\[
\begin{array}{ccc}
0.717 & 19.370 & 0.913 \\
1.119 & 0.133 & 9.700 \\
17.100 & 93.510 & 13.117 \\
30.900 & 0.013 & 78.710 \\
\end{array}
\]
Case 4 --- Using weights

Input data

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>0.1</td>
<td>9.7</td>
<td>0.7</td>
</tr>
<tr>
<td>11.1</td>
<td>23.5</td>
<td>11.1</td>
<td>9.4</td>
</tr>
<tr>
<td>0.9</td>
<td>9.0</td>
<td>8.7</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Sample means.

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4</td>
</tr>
<tr>
<td>10.9</td>
</tr>
<tr>
<td>9.8</td>
</tr>
</tbody>
</table>

Standard deviation.

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5.8</td>
</tr>
<tr>
<td>11.8</td>
</tr>
<tr>
<td>1.2</td>
</tr>
</tbody>
</table>

Correlation matrix.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0000</td>
<td>0.9193</td>
<td>0.9200</td>
<td></td>
</tr>
<tr>
<td>0.9193</td>
<td>1.0000</td>
<td>0.6915</td>
<td></td>
</tr>
<tr>
<td>0.9200</td>
<td>0.6915</td>
<td>1.0000</td>
<td></td>
</tr>
</tbody>
</table>

Variance matrix.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>33.951</td>
<td>63.208</td>
<td>6.485</td>
<td></td>
</tr>
<tr>
<td>63.208</td>
<td>139.250</td>
<td>9.871</td>
<td></td>
</tr>
<tr>
<td>6.485</td>
<td>9.871</td>
<td>1.464</td>
<td></td>
</tr>
</tbody>
</table>

Sum of weights

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0</td>
</tr>
</tbody>
</table>

Case 5 --- Not using weights

Input data

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>0.1</td>
<td>9.7</td>
<td>0.7</td>
</tr>
<tr>
<td>11.1</td>
<td>3.5</td>
<td>13.1</td>
<td>19.4</td>
</tr>
<tr>
<td>0.9</td>
<td>0.0</td>
<td>78.7</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Sample means.

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4</td>
</tr>
<tr>
<td>1.2</td>
</tr>
<tr>
<td>33.8</td>
</tr>
</tbody>
</table>

Standard deviation.

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5.8</td>
</tr>
<tr>
<td>2.0</td>
</tr>
</tbody>
</table>
Correlation matrix.

\[
\begin{pmatrix}
1.0000 & 0.9999 & -0.4781 \\
0.9999 & 1.0000 & -0.4881 \\
-0.4781 & -0.4881 & 1.0000
\end{pmatrix}
\]

Variance matrix.

\[
\begin{pmatrix}
33.951 & 11.567 & -108.343 \\
11.567 & 3.941 & -37.687 \\
-108.343 & -37.687 & 1512.750
\end{pmatrix}
\]

Sum of weights 3.0

Case 6 --- Using weights

Input data

\[
\begin{pmatrix}
1.1 & 0.1 & 9.7 & 0.7 \\
17.1 & 93.5 & 13.1 & 19.4 \\
30.9 & 0.0 & 78.7 & 0.9
\end{pmatrix}
\]

Sample means.

17.2
86.3
15.9

Standard deviation.

4.2
25.6
13.7

Correlation matrix.

\[
\begin{pmatrix}
1.0000 & -0.0461 & 0.7426 \\
-0.0461 & 1.0000 & -0.7033 \\
0.7426 & -0.7033 & 1.0000
\end{pmatrix}
\]

Variance matrix.

\[
\begin{pmatrix}
17.846 & -4.989 & 43.123 \\
-4.989 & 656.407 & -247.692 \\
43.123 & -247.692 & 188.970
\end{pmatrix}
\]

Sum of weights 21.0