1 Purpose

nag_nearest_correlation_shrinking (g02anc) computes a correlation matrix, subject to preserving a leading principle submatrix and applying the smallest uniform perturbation to the remainder of the approximate input matrix.

2 Specification

```c
#include <nag.h>
#include <nagg02.h>

void nag_nearest_correlation_shrinking (double g[], Integer pdg, Integer n, Integer k, double errtol, double eigtol, double x[], Integer pdx, double *alpha, Integer *iter, double *eigmin, double *norm, NagError *fail)
```

3 Description

nag_nearest_correlation_shrinking (g02anc) finds a correlation matrix, X, starting from an approximate correlation matrix, G, with positive definite leading principle submatrix of order k. The returned correlation matrix, X, has the following structure:

$$X = \alpha \begin{pmatrix} A & 0 \\ 0 & I \end{pmatrix} + (1 - \alpha)G$$

where A is the k by k leading principle submatrix of the input matrix G and positive definite, and $\alpha \in [0, 1]$.

nag_nearest_correlation_shrinking (g02anc) utilizes a shrinking method to find the minimum value of α such that X is positive definite with unit diagonal.

4 References

Higham N J, Strabić N and Šego V (2014) Restoring definiteness via shrinking, with an application to correlation matrices with a fixed block MIMS EPrint 2014.54 Manchester Institute for Mathematical Sciences, The University of Manchester, UK

5 Arguments

1: $g[pdg \times n]$ – double

 Note: the (i, j)th element of the matrix G is stored in $g[(j - 1) \times pdg + i - 1]$.

 On entry: G, the initial matrix.

 On exit: a symmetric matrix $\frac{1}{2}(G + G^T)$ with the diagonal set to I.

2: pdg – Integer

 On entry: the stride separating matrix row elements in the array g.

 Constraint: $pdg \geq n$.
3: n – Integer
 Input
 On entry: the order of the matrix G.
 Constraint: $n > 0$.

4: k – Integer
 Input
 On entry: k, the order of the leading principle submatrix A.
 Constraint: $n > k > 0$.

5: errtol – double
 Input
 On entry: the termination tolerance for the iteration.
 If $\text{errtol} \leq 0$, *machine precision* is used. See Section 7 for further details.

6: eigtol – double
 Input
 On entry: the tolerance used in determining the definiteness of A.
 If $\lambda_{\text{min}}(A) > n \times \lambda_{\text{max}}(A) \times \text{eigtol}$, where $\lambda_{\text{min}}(A)$ and $\lambda_{\text{max}}(A)$ denote the minimum and maximum eigenvalues of A respectively, A is positive definite.
 If $\text{eigtol} \leq 0$, *machine precision* is used.

7: $x[pdx \times n]$ – double
 Output
 Note: the (i,j)th element of the matrix X is stored in $x[(j - 1) \times pdx + i - 1]$.
 On exit: contains the matrix X.

8: pdx – Integer
 Input
 On entry: the stride separating matrix row elements in the array x.
 Constraint: $pdx \geq n$.

9: α – double *
 Output
 On exit: α.

10: iter – Integer *
 Output
 On exit: the number of iterations taken.

11: eigmin – double *
 Output
 On exit: the smallest eigenvalue of the leading principle submatrix A.

12: norm – double *
 Output
 On exit: the value of $\|G - X\|_F$ after the final iteration.

13: fail – NagError *
 Input/Output
 The NAG error argument (see Section 3.6 in the Essential Introduction).

6 **Error Indicators and Warnings**

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.
NE_BAD_PARAM
On entry, argument <value> had an illegal value.

NE_EIGENPROBLEM
Failure to solve intermediate eigenproblem. This should not occur. Please contact NAG.

NE_INT
On entry, n = <value>.
Constraint: n > 0.

NE_INT_2
On entry, k = <value> and n = <value>.
Constraint: n ≥ k > 0.
On entry, pdg = <value> and n = <value>.
Constraint: pdg ≥ n.
On entry, pdx = <value> and n = <value>.
Constraint: pdx ≥ n.

NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.
An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

NE_MAT_NOT_POS_DEF
The k-by-k principle leading submatrix of the initial matrix G is not positive definite.

NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

7 Accuracy
The algorithm uses a bisection method. It is terminated when the computed α is within errtol of the
minimum value. The positive definiteness of X is such that it can be successfully factorized with a call to
nag_dpotrf (f07fdc).
The number of iterations taken for the bisection will be:
\[\left\lfloor \log_2 \left(\frac{1}{\text{errtol}} \right) \right\rfloor. \]

8 Parallelism and Performance
nag_nearest_correlation_shrinking (g02anc) is threaded by NAG for parallel execution in multithreaded
implementations of the NAG Library.
nag_nearest_correlation_shrinking (g02anc) makes calls to BLAS and/or LAPACK routines, which may
be threaded within the vendor library used by this implementation. Consult the documentation for the
vendor library for further information.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this function. Please also consult the Users’ Note for your
implementation for any additional implementation-specific information.
9 Further Comments

Arrays are internally allocated by nag_nearest_correlation_shrinking (g02anc). The total size of these arrays does not exceed $2 \times n^2 + 3 \times n$ real elements. All allocated memory is freed before return of nag_nearest_correlation_shrinking (g02anc).

10 Example

This example finds the smallest uniform perturbation α to G, such that the output is a correlation matrix and the k-by-k leading principle submatrix of the input is preserved,

$$G = \begin{pmatrix}
1.0000 & -0.0991 & 0.5665 & -0.5653 & -0.3441 \\
-0.0991 & 1.0000 & -0.4273 & 0.8474 & 0.4975 \\
0.5665 & -0.4273 & 1.0000 & -0.1837 & -0.0585 \\
-0.5653 & 0.8474 & -0.1837 & 1.0000 & -0.2713 \\
-0.3441 & 0.4975 & -0.0585 & -0.2713 & 1.0000
\end{pmatrix}. $$

10.1 Program Text

/* nag_nearest_correlation_shrinking (g02anc) Example Program. *
* Copyright 2014 Numerical Algorithms Group. *
* Mark 25, 2014. */

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg02.h>
#include <nagx04.h>

int main(void)
{
 #define G(I,J) g[(J-1)*pdg + I-1]

 /* Scalars */
 Integer exit_status = 0;
 double alpha, eigmin, eigtol, errtol, norm;
 Integer i, j, iter, k, n, pdg, pdx;

 /* Arrays */
 double *g = 0, *x = 0;

 /* Nag Types */
 Nag_OrderType order;
 NagError fail;

 INIT_FAIL(fail);

 /* Output preamble */
 printf("nag_nearest_correlation_shrinking (g02anc) Example Program Results\n\n");
 fflush(stdout);

 /* Skip heading in data file */
 #ifdef _WIN32
 scanf_s("%*_n");
 #else
 scanf("%*_n");
 #endif

 /* Read in the problem size and k */
 #ifdef _WIN32
 scanf_s("%NAG_IFMT"%NAG_IFMT%*[\n] ", &n, &k);
 #else

```c
scanf("%"NAG_IFMT"%"NAG_IFMT"%*[\n] ", &n, &k);
#endif

pdg = n;
pdx = n;
if ((g = NAG_ALLOC(pdg*n, double)) ||
    (x = NAG_ALLOC(pdx*n, double)))
{
    printf("Allocation failure\n");
    exit_status = -1;
    goto END;
}

/* Read in the matrix g*/
for ( i=1; i<=n; i++)
    for (j=1; j<=n; j++)
#ifdef _WIN32
    scanf_s("%lf", &G(i, j));
#else
    scanf("%lf", &G(i, j));
#endif
#ifdef _WIN32
    scanf_s("%*[\n] ");
#else
    scanf("%*[\n] ");
#endif

/* Use the defaults for ERRTOL and EIGTOL */
errtol = -1.0;
eigtol = -1.0;

/* nag_nearest_correlation_shrinking (g02anc).
* Calculate nearest perturbed correlation matrix with preserved leading block */
nag_nearest_correlation_shrinking(g, pdg, n, k, errtol, eigtol, x, pdx,
    &alpha, &iter, &eigmin, &norm, &fail);
if (fail.code != NE_NOERROR)
{
    printf("Error from nag_nearest_correlation_shrinking (g02anc).\n%s\n", fail.message);
    exit_status = 1;
    goto END;
}

/* Display results */
order = Nag_ColMajor;
/*
* nag_gen_real_mat_print (x04cac).
* Prints real general matrix */
nag_gen_real_mat_print(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n, g,
    "Symmetrised Input Matrix G", NULL, &fail);
if (fail.code != NE_NOERROR)
{
    printf("Error from nag_gen_real_mat_print (x04cac).\n%s\n", fail.message);
    exit_status = 2;
    goto END;
}

printf("\n");
fflush(stdout);
nag_gen_real_mat_print(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n, x,
    "Nearest Perturbed Correlation Matrix X", NULL, &fail);
if (fail.code != NE_NOERROR)
{
    printf("Error from nag_gen_real_mat_print (x04cac).\n%s\n", fail.message);
}
```
exit_status = 3;
goto END;
}

printf("\n\%s %34\"NAG_IFMT\" \n\n","k:", k);
printf("\%s %9\"NAG_IFMT\" \n\n","Number of iterations taken:", iter);
printf("\%s %34.4f \n\n","alpha: ", alpha);
printf("\%s %29.4f \n\n","norm value: ", norm);
printf("\%s %15.4f \n","Smallest eigenvalue of A: ", eigmin);

END:
NAG_FREE(g);
NAG_FREE(x);
return exit_status;
}

10.2 Program Data

nag_nearest_correlation_shrinking (g02anc) Example Program Data

5 3 :: n, k
1.0000 -0.0991 0.5665 -0.5653 -0.3441
-0.0991 1.0000 -0.4273 0.8474 0.4975
0.5665 -0.4273 1.0000 -0.1837 -0.0585
-0.5653 0.8474 -0.1837 1.0000 -0.2713
-0.3441 0.4975 -0.0585 -0.2713 1.0000 :: End of g

10.3 Program Results

nag_nearest_correlation_shrinking (g02anc) Example Program Results

Symmetrised Input Matrix G
1 2 3 4 5
1 1.0000 -0.0991 0.5665 -0.5653 -0.3441
2 -0.0991 1.0000 -0.4273 0.8474 0.4975
3 0.5665 -0.4273 1.0000 -0.1837 -0.0585
4 -0.5653 0.8474 -0.1837 1.0000 -0.2713
5 -0.3441 0.4975 -0.0585 -0.2713 1.0000

Nearest Perturbed Correlation Matrix X
1 2 3 4 5
1 1.0000 -0.0991 0.5665 -0.3826 -0.2329
2 -0.0991 1.0000 -0.4273 0.5735 0.3367
3 0.5665 -0.4273 1.0000 -0.1243 -0.0396
4 -0.3826 0.5735 -0.1243 1.0000 -0.1836
5 -0.2329 0.3367 -0.0396 -0.1836 1.0000

k: 3

Number of iterations taken: 27

alpha: 0.3232

norm value: 0.5624

Smallest eigenvalue of A: 0.3359