1 Purpose
nag_mills_ratio (g01mbc) returns the reciprocal of Mills’ Ratio.

2 Specification
#include <nag.h>
#include <nagg01.h>
double nag_mills_ratio (double x)

3 Description
nag_mills_ratio (g01mbc) calculates the reciprocal of Mills’ Ratio, the hazard rate, \(\lambda(x) \), for the standard Normal distribution. It is defined as the ratio of the ordinate to the upper tail area of the standard Normal distribution, that is,

\[
\lambda(x) = \frac{Z(x)}{Q(x)} = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}} / \int_x^{\infty} e^{-\frac{t^2}{2}} dt
\]

The calculation is based on a Chebyshev expansion as described in nag_erfcx (s15agc).

4 References

5 Arguments
1: \(x \) – double

 On entry: \(x \), the argument of the reciprocal of Mills’ Ratio.

6 Error Indicators and Warnings
None.

7 Accuracy
In the left-hand tail, \(x < 0.0 \), if \(\frac{1}{2}e^{-\frac{x^2}{2}} \leq \) the safe range argument (nag_real_safe_small_number (X02AMC)), then 0.0 is returned, which is close to the true value.

The relative accuracy is bounded by the effective machine precision. See nag_erfcx (s15agc) for further discussion.

8 Parallelism and Performance
Not applicable.
9 Further Comments

If, before entry, \(x \) is not a standard Normal variable, it has to be standardized, and on exit, \texttt{nag_mills_ratio} (\texttt{g01mbc}) has to be divided by the standard deviation. That is, if the Normal distribution has mean \(\mu \) and variance \(\sigma^2 \), then its hazard rate, \(\lambda(x; \mu, \sigma^2) \), is given by

\[
\lambda(x; \mu, \sigma^2) = \lambda((x - \mu)/\sigma)/\sigma.
\]

10 Example

The hazard rate is evaluated at different values of \(x \) for Normal distributions with different means and variances. The results are then printed.

10.1 Program Text

/* nag_mills_ratio (g01mbc) Example Program. *
 * Copyright 2014 Numerical Algorithms Group. *
 * Mark 7, 2001. */

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg01.h>

int main(void)
{
 /* Scalars */
 Integer exit_status = 0;
 double rm, x, xmu, xsig, z;
 Integer i;
 printf("nag_mills_ratio (g01mbc) Example Program Results\n");

 /* Skip heading in data file */
 #ifdef _WIN32
 scanf_s("%*[\^\n] ");
 #else
 scanf("%*[\^\n] ");
 #endif

 printf("%2sMean%5sSigma%4sX%8sReciprocal", ", ", ", ");
 printf("\nMills Ratio\n\n");
 for (i = 1; i <= 3; ++i)
 {
 #ifdef _WIN32
 scanf_s("%f%f%f%*[\^\n] ", &x, &xmu, &xsig);
 #else
 scanf("%f%f%f%*[\^\n] ", &x, &xmu, &xsig);
 #endif
 z = (x - xmu) / xsig;
 /* nag_mills_ratio (g01mbc). *
 * Computes reciprocal of Mills’ Ratio */
 rm = nag_mills_ratio(z) / xsig;
 printf("%7.4f%2s%7.4f%2s%7.4f%2s%7.4f"," , , xsig, ", , x, ",
 rm);
 printf("\n");
 }
 return exit_status;
}
10.2 Program Data

nag_mills_ratio (g01mbc) Example Program Data
0.0 0.0 1.0
-2.0 1.0 2.5
10.3 9.0 1.6

10.3 Program Results

nag_mills_ratio (g01mbc) Example Program Results

<table>
<thead>
<tr>
<th>Mean</th>
<th>Sigma</th>
<th>X</th>
<th>Mills Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000</td>
<td>1.0000</td>
<td>0.0000</td>
<td>0.7979</td>
</tr>
<tr>
<td>1.0000</td>
<td>2.5000</td>
<td>-2.0000</td>
<td>0.0878</td>
</tr>
<tr>
<td>9.0000</td>
<td>1.6000</td>
<td>10.3000</td>
<td>0.8607</td>
</tr>
</tbody>
</table>