NAG Library Function Document
nag_prob_non_central_f_dist (g01gdc)

1 Purpose

nag_prob_non_central_f_dist (g01gdc) returns the probability associated with the lower tail of the noncentral F or variance-ratio distribution.

2 Specification

```c
#include <nag.h>
#include <nagg01.h>
double nag_prob_non_central_f_dist (double f, double df1, double df2,
                              double lambda, double tol, Integer max_iter, NagError *fail)
```

3 Description

The lower tail probability of the noncentral F-distribution with ν_1 and ν_2 degrees of freedom and noncentrality parameter λ, $P(F \leq f : \nu_1, \nu_2; \lambda)$, is defined by

$$P(F \leq f : \nu_1, \nu_2; \lambda) = \int_0^x p(F : \nu_1, \nu_2; \lambda) \, dF,$$

where

$$P(F : \nu_1, \nu_2; \lambda) = \sum_{j=0}^{\infty} e^{-\lambda/2}(\lambda/2)^j \frac{(\nu_1 + 2j)^{(\nu_1 + \nu_2)/2}}{B((\nu_1 + 2j)/2, \nu_2/2)} \times u^{(\nu_1 + \nu_2)/2}[\nu_2 + (\nu_1 + 2j)u]^{-(\nu_1 + \nu_2)/2}$$

and $B(\cdot, \cdot)$ is the beta function.

The probability is computed by means of a transformation to a noncentral beta distribution:

$$P(F \leq f : \nu_1, \nu_2; \lambda) = P_\beta(X \leq x : a, b; \lambda),$$

where $x = \frac{\nu_1 f}{\nu_1 f + \nu_2}$ and $P_\beta(X \leq x : a, b; \lambda)$ is the lower tail probability integral of the noncentral beta distribution with parameters $a, b,$ and λ.

If ν_2 is very large, greater than 10^6, then a χ^2 approximation is used.

4 References

5 Arguments

1: f – double

Input

On entry: f, the deviate from the noncentral F-distribution.

Constraint: $f > 0.0$.
2: df1 – double

 On entry: the degrees of freedom of the numerator variance, \(\nu_1 \).

 Constraint: \(0.0 < df1 \leq 10^6 \).

3: df2 – double

 On entry: the degrees of freedom of the denominator variance, \(\nu_2 \).

 Constraint: \(df2 > 0.0 \).

4: lambda – double

 On entry: \(\lambda \), the noncentrality parameter.

 Constraint: \(0.0 \leq \lambda \leq -2.0\log(U) \) where \(U \) is the safe range parameter as defined by nag_real_safe_small_number (X02AMC).

5: tol – double

 On entry: the relative accuracy required by you in the results. If nag_prob_non_central_f_dist (g01gdc) is entered with tol greater than or equal to 1.0 or less than \(10 \times \text{machine precision} \) (see nag_machine_precision (X02AJC)), then the value of \(10 \times \text{machine precision} \) is used instead.

6: max_iter – Integer

 On entry: the maximum number of iterations to be used.

 Suggested value: 500. See nag_prob_non_central_chi_sq (g01gcc) and nag_prob_non_central_beta_dist (g01gec) for further details.

 Constraint: \(max_iter \geq 1 \).

7: fail – NagError *

 Input/Output

 The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

NE_CONV

The solution has failed to converge in \(\langle \text{value} \rangle \) iterations. Consider increasing \(max_iter \) or \(tol \).

NE_INT_ARG_LT

On entry, \(max_iter = \langle \text{value} \rangle \).
Constraint: \(max_iter \geq 1 \).

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.
NE_PROB_F
The required probability cannot be computed accurately. This may happen if the result would be very close to zero or one. Alternatively the values of df1 and f may be too large. In the latter case you could try using a normal approximation, see Abramowitz and Stegun (1972).

NE_PROB_F_INIT
The required accuracy was not achieved when calculating the initial value of the central F or χ^2 probability. You should try a larger value of tol. If the χ^2 approximation is being used then nag_prob_non_central_f_dist (g01gdc) returns zero otherwise the value returned should be an approximation to the correct value.

NE_REAL_ARG_CONS
On entry, df1 = \langle value\rangle.
Constraint: 0.0 < df1 \leq 10^6.

On entry, df1 = \langle value\rangle.
Constraint: df1 > 0.0.

On entry, lambda = \langle value\rangle.
Constraint: 0.0 \leq lambda \leq -2.0 \times \log(U), where U is the safe range parameter as defined by nag_real_safe_small_number (X02AMC).

7 Accuracy
The relative accuracy should be as specified by tol. For further details see nag_prob_non_central_chi_sq (g01gcc) and nag_prob_non_central_beta_dist (g01gec).

8 Parallelism and Performance
Not applicable.

9 Further Comments
When both ν_1 and ν_2 are large a Normal approximation may be used and when only ν_1 is large a χ^2 approximation may be used. In both cases λ is required to be of the same order as ν_1. See Abramowitz and Stegun (1972) for further details.

10 Example
This example reads values from, and degrees of freedom for, F-distributions, computes the lower tail probabilities and prints all these values until the end of data is reached.

10.1 Program Text
/* nag_prob_non_central_f_dist (g01gdc) Example Program. *
 * Copyright 2014 Numerical Algorithms Group. *
 * NAG C Library *
 * Mark 6, 2000. */
```c
#include <stdio.h>
#include <nag.h>
#include <nagg01.h>

int main(void)
{
    Integer exit_status = 0, max_iter;
    NagError fail;
    double df1, df2, f, lambda, prob, tol;

    INIT_FAIL(fail);
    printf("nag_prob_non_central_f_dist (g01gdc) Example Program Results\n");

    /* Skip heading in data file */
    #ifdef _WIN32
        scanf_s("%*[^\n]\n");
    #else
        scanf("%*[^\n]\n");
    #endif
    printf("f df1 df2 lambda prob

    tol = 5e-6;
    max_iter = 50;
    #ifdef _WIN32
        while ((scanf_s("%lf %lf %lf %lf %*[^\n]\n",
                       &f, &df1, &df2, &lambda)) != EOF)
    #else
        while ((scanf("%lf %lf %lf %lf %*[^\n]\n",
                       &f, &df1, &df2, &lambda)) != EOF)
    #endif

        prob = nag_prob_non_central_f_dist(f, df1, df2, lambda, tol, max_iter, &fail);
        if (fail.code != NE_NOERROR)
            {
                printf("Error from nag_prob_non_central_f_dist (g01gdc).\n%s\n", fail.message);
                exit_status = 1;
                goto END;
            }

        printf("%8.3f %8.3f %8.3f %8.3f %8.4f\n", f, df1, df2, lambda, prob);
    }

    END:
    return exit_status;
}
```

10.2 Program Data

<table>
<thead>
<tr>
<th>f</th>
<th>df1</th>
<th>df2</th>
<th>lambda</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5</td>
<td>1.5</td>
<td>25.5</td>
<td>3.0</td>
</tr>
<tr>
<td>39.9</td>
<td>1.0</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>2.5</td>
<td>20.25</td>
<td>1.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
10.3 Program Results

nag_prob_non_central_f_dist (g01gdc) Example Program Results

<table>
<thead>
<tr>
<th>f</th>
<th>df1</th>
<th>df2</th>
<th>lambda</th>
<th>prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.500</td>
<td>1.500</td>
<td>25.500</td>
<td>3.000</td>
<td>0.8214</td>
</tr>
<tr>
<td>39.900</td>
<td>1.000</td>
<td>1.000</td>
<td>2.000</td>
<td>0.8160</td>
</tr>
<tr>
<td>2.500</td>
<td>20.250</td>
<td>1.000</td>
<td>0.000</td>
<td>0.5342</td>
</tr>
</tbody>
</table>