NAG Library Function Document
nag_deviates_studentized_range (g01fmc)

1 Purpose
nag_deviates_studentized_range (g01fmc) returns the deviate associated with the lower tail probability of the distribution of the Studentized range statistic.

2 Specification
#include <nag.h>
#include <nag01.h>
double nag_deviates_studentized_range (double p, double v, Integer ir,
NagError *fail)

3 Description
The externally Studentized range, \(q \), for a sample, \(x_1, x_2, \ldots, x_r \), is defined as
\[
q = \frac{\max(x_i) - \min(x_i)}{\hat{\sigma}_e},
\]
where \(\hat{\sigma}_e \) is an independent estimate of the standard error of the \(x_i \). The most common use of this statistic is in the testing of means from a balanced design. In this case for a set of group means, \(T_1, T_2, \ldots, T_r \), the Studentized range statistic is defined to be the difference between the largest and smallest means, \(T_{\text{largest}} \) and \(T_{\text{smallest}} \), divided by the square root of the mean-square experimental error, \(MS_{\text{error}} \), over the number of observations in each group, \(n \), i.e.,
\[
q = \frac{T_{\text{largest}} - T_{\text{smallest}}}{\sqrt{MS_{\text{error}}/n}}.
\]
The Studentized range statistic can be used as part of a multiple comparisons procedure such as the Newman–Keuls procedure or Duncan’s multiple range test (see Montgomery (1984) and Winer (1970)).

For a Studentized range statistic the probability integral, \(P(q; v, r) \), for \(v \) degrees of freedom and \(r \) groups, can be written as:
\[
P(q; v, r) = C \int_{-\infty}^{\infty} x^{v-1} e^{-x^2/2} \left(r \int_{-\infty}^{\infty} \phi(y)(\Phi(y) - \Phi(y - qx))^{-1} \, dy \right) \, dx,
\]
where
\[
C = \frac{\gamma^{v/2}}{\Gamma(v/2)2^{v/2-1}}, \quad \phi(y) = \frac{1}{\sqrt{2\pi}} e^{-y^2/2} \quad \text{and} \quad \Phi(y) = \int_{-\infty}^{y} \phi(t) \, dt.
\]

For a given probability \(p_0 \), the deviate \(q_0 \) is found as the solution to the equation
\[
P(q_0; v, r) = p_0,
\]
using a root-finding procedure. Initial estimates are found using the approximation given in Lund and Lund (1983) and a simple search procedure.
4 References

5 Arguments

1: \(p \) – double

 \textit{Input}

 On entry: the lower tail probability for the Studentized range statistic, \(p_0 \).

 Constraint: \(0.0 < p < 1.0 \).

2: \(v \) – double

 \textit{Input}

 On entry: \(v \), the number of degrees of freedom.

 Constraint: \(v \geq 1.0 \).

3: \(ir \) – Integer

 \textit{Input}

 On entry: \(r \), the number of groups.

 Constraint: \(ir \geq 2 \).

4: \(fail \) – NagError *

 \textit{Input/Output}

 The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

\textbf{NE_ACCURACY}

Warning – There is some doubt as to whether full accuracy has been achieved.

\textbf{NE_ALLOC_FAIL}

Dynamic memory allocation failed.

See Section 3.2.1.2 in the Essential Introduction for further information.

\textbf{NE_INIT_ESTIMATE}

Unable to find initial estimate.

\textbf{NE_INT}

On entry, \(ir = \langle \text{value} \rangle \).

Constraint: \(ir \geq 2 \).

\textbf{NE_INTERNAL_ERROR}

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.

See Section 3.6.6 in the Essential Introduction for further information.

\textbf{NE_NO_LICENCE}

Your licence key may have expired or may not have been installed correctly.

See Section 3.6.5 in the Essential Introduction for further information.
NE_REAL

On entry, \(p = \langle \text{value} \rangle \).
Constraint: \(0.0 < p < 1.0 \).

On entry, \(v = \langle \text{value} \rangle \).
Constraint: \(v \geq 1.0 \).

7 Accuracy

The returned solution, \(q_\ast \), to equation (1) is determined so that at least one of the following criteria apply.

(a) \(|P(q_\ast;v,r) - p_0| \leq 0.000005 \)
(b) \(|q_0 - q_\ast| \leq 0.000005 \times \max(1.0,|q_\ast|) \).

8 Parallelism and Performance

Not applicable.

9 Further Comments

To obtain the factors for Duncan's multiple-range test, equation (1) has to be solved for \(p_1 \), where \(p_1 = p_0^{-1} \), so on input \(p \) should be set to \(p_0^{-1} \).

10 Example

Three values of \(p, \nu \) and \(r \) are read in and the Studentized range deviates or quantiles are computed and printed.

10.1 Program Text

/* nag_deviates_studentized_range (g01fmc) Example Program. *
 * Copyright 2014 Numerical Algorithms Group.
 */
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf01.h>

int main(void)
{
 /* Scalars */
 double p, v, valq;
 Integer exit_status, i__, ir;
 NagError fail;

 exit_status = 0;
 INIT_FAIL(fail);

 printf("nag_deviates_studentized_range (g01fmc) Example Program Results\n");

 /* Skip heading in data file */
 ifdef _WIN32
 scanf_s("%*[\n] ");
 else
 scanf("%*[\n] ");

 /* Other code */
}
Program Data

nag_deviates_studentized_range (g01fmc) Example Program Data
0.95 10.0 5
0.30 60.0 12
0.90 5.0 4

Program Results

nag_deviates_studentized_range (g01fmc) Example Program Results

<table>
<thead>
<tr>
<th>p</th>
<th>v</th>
<th>ir</th>
<th>Quantile</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.95</td>
<td>10.0</td>
<td>5</td>
<td>4.6543</td>
</tr>
<tr>
<td>0.30</td>
<td>60.0</td>
<td>12</td>
<td>2.8099</td>
</tr>
<tr>
<td>0.90</td>
<td>5.0</td>
<td>4</td>
<td>4.2636</td>
</tr>
</tbody>
</table>