NAG Library Function Document

nag_gamma_dist (g01efc)

1 Purpose
nag_gamma_dist (g01efc) returns the lower or upper tail probability of the gamma distribution, with parameters α and β.

2 Specification
#include <nag.h>
#include <nag01.h>
double nag_gamma_dist (Nag_TailProbability tail, double g, double a, double b, NagError *fail)

3 Description
The lower tail probability for the gamma distribution with parameters α and β, $P(G \leq g)$, is defined by:

$$P(G \leq g; \alpha, \beta) = \frac{1}{\beta \Gamma(\alpha)} \int_0^g G^{\alpha-1} e^{-G/\beta} dG, \quad \alpha > 0.0, \beta > 0.0.$$

The mean of the distribution is α/β and its variance is $\alpha\beta^2$. The transformation $Z = \frac{G}{\beta}$ is applied to yield the following incomplete gamma function in normalized form,

$$P(G \leq g; \alpha, \beta) = P(Z \leq g/\beta : \alpha, 1.0) = \frac{1}{\Gamma(\alpha)} \int_0^{g/\beta} Z^{\alpha-1} e^{-Z} dZ.$$

This is then evaluated using nag_incomplete_gamma (s14bac).

4 References

5 Arguments
1: tail – Nag_TailProbability

On entry: indicates whether an upper or lower tail probability is required.

- tail = Nag_LowerTail
 The lower tail probability is returned, that is $P(G \leq g : \alpha, \beta)$.
- tail = Nag_UpperTail
 The upper tail probability is returned, that is $P(G \geq g : \alpha, \beta)$.

Constraint: tail = Nag_LowerTail or Nag_UpperTail.

2: g – double

On entry: g, the value of the gamma variate.

Constraint: $g \geq 0.0$.

3: a – double

 Input
 On entry: the parameter α of the gamma distribution.
 Constraint: $a > 0.0$.

4: b – double

 Input
 On entry: the parameter β of the gamma distribution.
 Constraint: $b > 0.0$.

5: fail – NagError *

 Input/Output
 The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

On any of the error conditions listed below except fail.code = NE_ALG_NOT_CONV nag_gamma_dist (g01efc) returns 0.0.

NE_ALG_NOT_CONV
The algorithm has failed to converge in $\langle\text{value}\rangle$ iterations. The probability returned should be a reasonable approximation to the solution.

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM
On entry, argument $\langle\text{value}\rangle$ had an illegal value.

NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

NE_REAL_ARG_LE
On entry, $a = \langle\text{value}\rangle$ and $b = \langle\text{value}\rangle$.
Constraint: $a > 0.0$ and $b > 0.0$.

NE_REAL_ARG_LT
On entry, $g = \langle\text{value}\rangle$.
Constraint: $g \geq 0.0$.

7 Accuracy

The result should have a relative accuracy of *machine precision*. There are rare occasions when the relative accuracy attained is somewhat less than *machine precision* but the error should not exceed more than 1 or 2 decimal places. Note also that there is a limit of 18 decimal places on the achievable accuracy, because constants in nag_incomplete_gamma (s14bac) are given to this precision.
8 Parallelism and Performance

Not applicable.

9 Further Comments

The time taken by nag_gamma_dist (g01efc) varies slightly with the input arguments \(g \), \(a \) and \(b \).

10 Example

This example reads in values from a number of gamma distributions and computes the associated lower tail probabilities.

10.1 Program Text

```c
/* nag.gamma.dist (g01efc) Example Program. *
* Copyright 2014 Numerical Algorithms Group. *
* Mark 1, 1990. */

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagg01.h>

int main(void)
{
    Integer exit_status = 0;
    double a, b, g, p;
    NagError fail;

    INIT_FAIL(fail);

    printf("nag.gamma.dist (g01efc) Example Program Results\n");
    printf(" Gamma deviate Alpha Beta Lower tail prob.\n");

    #ifdef _WIN32
    scanf_s("%*[\n"]);
    #else
    scanf("%*[\n"]);
    #endif

    /* nag.gamma.dist (g01efc).
    * Probabilities for the gamma distribution
    */
    p = nag.gamma.dist(Nag_LowerTail, g, a, b, &fail);
    if (fail.code != NE_NOERROR)
    {
        printf("Error from nag.gamma.dist (g01efc).\n%\n", fail.message);
        exit_status = 1;
        goto END;
    }
    printf(" %9.2f%13.2f%9.2f%14.4f\n", g, a, b, p);

END:
    return exit_status;
}
```

This example reads in values from a number of gamma distributions and computes the associated lower tail probabilities.
10.2 Program Data

nag_gamma_dist (g01efc) Example Program Data
15.5 4.0 2.0
 0.5 4.0 1.0
10.0 1.0 2.0
 5.0 2.0 2.0

10.3 Program Results

nag_gamma_dist (g01efc) Example Program Results
Gamma deviate Alpha Beta Lower tail prob.
 15.50 4.00 2.00 0.9499
 0.50 4.00 1.00 0.0018
 10.00 1.00 2.00 0.9933
 5.00 2.00 2.00 0.7127