NAG Library Function Document

nag_prob_f_dist (g01edc)

1 Purpose

nag_prob_f_dist (g01edc) returns the probability for the lower or upper tail of the F or variance-ratio distribution with real degrees of freedom.

2 Specification

#include <nag.h>
#include <nag01.h>

double nag_prob_f_dist (Nag_TailProbability tail, double f, double df1, double df2, NagError *fail)

3 Description

The lower tail probability for the F, or variance-ratio distribution, with \(\nu_1 \) and \(\nu_2 \) degrees of freedom, \(P(F \leq f : \nu_1, \nu_2) \), is defined by:

\[
P(F \leq f : \nu_1, \nu_2) = \frac{\nu_1^{\nu_1/2} \nu_2^{\nu_2/2} \Gamma((\nu_1 + \nu_2)/2)}{\Gamma(\nu_1/2) \Gamma(\nu_2/2)} \int_0^f F^{(\nu_1-2)/2}(\nu_1 F + \nu_2)^{-(\nu_1+\nu_2)/2} dF,
\]

for \(\nu_1, \nu_2 > 0, f \geq 0 \).

The probability is computed by means of a transformation to a beta distribution, \(P_{\beta}(B \leq \beta : a, b) \):

\[
P(F \leq f : \nu_1, \nu_2) = P_{\beta}\left(B \leq \frac{\nu_1 f}{\nu_1 f + \nu_2} : \nu_1/2, \nu_2/2 \right)
\]

and using a call to nag_prob_beta_dist (g01eec).

For very large values of both \(\nu_1 \) and \(\nu_2 \), greater than \(10^5 \), a normal approximation is used. If only one of \(\nu_1 \) or \(\nu_2 \) is greater than \(10^5 \) then a \(\chi^2 \) approximation is used, see Abramowitz and Stegun (1972).

4 References

5 Arguments

1: tail – Nag_TailProbability

On entry: indicates whether an upper or lower tail probability is required.

tail = Nag_LowerTail
The lower tail probability is returned, i.e., \(P(F \leq f : \nu_1, \nu_2) \).

tail = Nag_UpperTail
The upper tail probability is returned, i.e., \(P(F \geq f : \nu_1, \nu_2) \).

Constraint: tail = Nag_LowerTail or Nag_UpperTail.
2: \(f \) – double
 \textit{Input}
 \textit{On entry}: \(f \), the value of the \(F \) variate.
 \textit{Constraint}: \(f \geq 0.0 \).

3: \(df1 \) – double
 \textit{Input}
 \textit{On entry}: the degrees of freedom of the numerator variance, \(\nu_1 \).
 \textit{Constraint}: \(df1 > 0.0 \).

4: \(df2 \) – double
 \textit{Input}
 \textit{On entry}: the degrees of freedom of the denominator variance, \(\nu_2 \).
 \textit{Constraint}: \(df2 > 0.0 \).

5: \(\text{fail} \) – \texttt{NagError} *
 \textit{Input/Output}
 The NAG error argument (see Section 3.6 in the Essential Introduction).

6 \textbf{Error Indicators and Warnings}
On any of the error conditions listed below except NE_PROBAB_CLOSE_TO_TAIL nag_prob_f_dist (g01edc) returns 0.0.

- **NE_ALLOC_FAIL**
 Dynamic memory allocation failed.
 See Section 3.2.1.2 in the Essential Introduction for further information.

- **NE_BAD_PARAM**
 On entry, argument \(\langle \text{value} \rangle \) had an illegal value.

- **NE_INTERNAL_ERROR**
 An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
 An unexpected error has been triggered by this function. Please contact NAG.
 See Section 3.6.6 in the Essential Introduction for further information.

- **NE_NO_LICENCE**
 Your licence key may have expired or may not have been installed correctly.
 See Section 3.6.5 in the Essential Introduction for further information.

- **NE_PROBAB_CLOSE_TO_TAIL**
 The probability is too close to 0.0 or 1.0. \(f \) is too far out into the tails for the probability to be evaluated exactly. The result tends to approach 1.0 if \(f \) is large, or 0.0 if \(f \) is small. The result returned is a good approximation to the required solution.

- **NE_REAL_ARG_LE**
 On entry, \(df1 = \langle \text{value} \rangle \) and \(df2 = \langle \text{value} \rangle \).
 \textit{Constraint}: \(df1 > 0.0 \) and \(df2 > 0.0 \).

- **NE_REAL_ARG_LT**
 On entry, \(f = \langle \text{value} \rangle \).
 \textit{Constraint}: \(f \geq 0.0 \).
7 Accuracy
The result should be accurate to five significant digits.

8 Parallelism and Performance
Not applicable.

9 Further Comments
For higher accuracy nag_prob_beta_dist (g01eec) can be used along with the transformations given in Section 3.

10 Example
This example reads values from, and degrees of freedom for, a number of F-distributions and computes the associated lower tail probabilities.

10.1 Program Text
/* nag_prob_f_dist (g01edc) Example Program.
 * Copyright 2014 Numerical Algorithms Group.
 * Mark 1, 1990.
 */
#include <nag.h>
#include <stdio.h>
#include <nagg01.h>

int main(void)
{
 Integer exit_status = 0;
 double df1, df2, f, prob;
 NagError fail;
 INIT_FAIL(fail);

 /* Skip heading in data file */
 #ifdef _WIN32
 scanf_s("%*[\n]");
 #else
 scanf("%*[\n]");
 #endif
 printf("nag_prob_f_dist (g01edc) Example Program Results\n");
 printf(" f df1 df2 prob\n\n");
 #ifdef _WIN32
 while (scanf_s("%lf %lf %lf", &f, &df1, &df2) != EOF)
 #else
 while (scanf("%lf %lf %lf", &f, &df1, &df2) != EOF)
 #endif
 {
 /* nag_prob_f_dist (g01edc).
 * Probabilities for F-distribution
 */
 prob = nag_prob_f_dist(Nag_LowerTail, f, df1, df2, &fail);
 if (fail.code != NE_NOERROR)
 {
 printf("Error from nag_prob_f_dist (g01edc).\n
", fail.message);
 exit_status = 1;
 goto END;
 }
 }
 return exit_status;
}
printf("%6.3f%8.3f%8.3f%8.4f\n", f, df1, df2, prob);
}

END:
 return exit_status;
}

10.2 Program Data

nag_prob_f_dist (g01edc) Example Program Data
 5.5 1.5 25.5
 39.9 1.0 1.0
 2.5 20.25 1.0

10.3 Program Results

nag_prob_f_dist (g01edc) Example Program Results

<table>
<thead>
<tr>
<th>f</th>
<th>df1</th>
<th>df2</th>
<th>prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.500</td>
<td>1.500</td>
<td>25.500</td>
<td>0.9837</td>
</tr>
<tr>
<td>39.900</td>
<td>1.000</td>
<td>1.000</td>
<td>0.9000</td>
</tr>
<tr>
<td>2.500</td>
<td>20.250</td>
<td>1.000</td>
<td>0.5342</td>
</tr>
</tbody>
</table>