NAG Library Function Document
nag_normal_scores_var (g01dcc)

1 Purpose
nag_normal_scores_var (g01dcc) computes an approximation to the variance-covariance matrix of an ordered set of independent observations from a Normal distribution with mean 0.0 and standard deviation 1.0.

2 Specification
#include <nag.h>
#include <nagg01.h>

void nag_normal_scores_var (Integer n, double exp1, double exp2,
 double sumssq, double vec[], NagError *fail)

3 Description
nag_normal_scores_var (g01dcc) is an adaptation of the Applied Statistics Algorithm AS 128, see Davis and Stephens (1978). An approximation to the variance-covariance matrix, \(V \), using a Taylor series expansion of the Normal distribution function is discussed in David and Johnson (1954).

However, convergence is slow for extreme variances and covariances. The present function uses the David–Johnson approximation to provide an initial approximation and improves upon it by use of the following identities for the matrix.

For a sample of size \(n \), let \(m_i \) be the expected value of the \(i \)th largest order statistic, then:

(a) for any \(i = 1, 2, \ldots, n \), \(\sum_{j=1}^{n} V_{ij} = 1 \)
(b) \(V_{12} = V_{11} + m_2^2 - m_n m_{n-1} - 1 \)
(c) the trace of \(V \) is \(\text{tr}(V) = n - \sum_{i=1}^{n} m_i^2 \)
(d) \(V_{ij} = V_{ji} = V_{rs} = V_{sr} \) where \(r = n + 1 - i, s = n + 1 - j \) and \(i, j = 1, 2, \ldots, n \). Note that only the upper triangle of the matrix is calculated and returned column-wise in vector form.

4 References

5 Arguments
1: \(n \) – Integer
 \(\text{Input} \)
 \(\text{On entry:} \ n, \text{the sample size.} \)
 \(\text{Constraint:} \ n > 0. \)
2: \texttt{exp1} – double \hspace{1cm} \textit{Input}

\textit{On entry:} the expected value of the largest Normal order statistic, \(m_n\), from a sample of size \(n\).

3: \texttt{exp2} – double \hspace{1cm} \textit{Input}

\textit{On entry:} the expected value of the second largest Normal order statistic, \(m_{n-1}\), from a sample of size \(n\).

4: \texttt{sumssq} – double \hspace{1cm} \textit{Input}

\textit{On entry:} the sum of squares of the expected values of the Normal order statistics from a sample of size \(n\).

5: \texttt{vec[n \times (n + 1)/2]} – double \hspace{1cm} \textit{Output}

\textit{On exit:} the upper triangle of the \(n\) by \(n\) variance-covariance matrix packed by column. Thus element \(V_{ij}\) is stored in \texttt{vec[i + j \times (j - 1)/2 - 1]}, for \(1 \leq i \leq j \leq n\).

6: \texttt{fail} – NagError * \hspace{1cm} \textit{Input/Output}

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 \textbf{Error Indicators and Warnings}

\textbf{NE_ALLOC_FAIL}

Dynamic memory allocation failed.

See Section 3.2.1.2 in the Essential Introduction for further information.

\textbf{NE_BAD_PARAM}

On entry, argument \texttt{value} had an illegal value.

\textbf{NE_INT}

On entry, \(n = \texttt{value}\).

Constraint: \(n > 0\).

\textbf{NE_INTERNAL_ERROR}

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.

See Section 3.6.6 in the Essential Introduction for further information.

\textbf{NE_NO_LICENCE}

Your licence key may have expired or may not have been installed correctly.

See Section 3.6.5 in the Essential Introduction for further information.

7 \textbf{Accuracy}

For \(n \leq 20\), where comparison with the exact values can be made, the maximum error is less than 0.0001.

8 \textbf{Parallelism and Performance}

Not applicable.
9 Further Comments

The time taken by nag_normal_scores_var (g01dcc) is approximately proportional to n^2.

The arguments $\text{exp1} \; (= m_n)$, $\text{exp2} \; (= m_{n-1})$ and $\text{sumssq} \; (= \sum_{j=1}^{n} m_j^2)$ may be found from the expected values of the Normal order statistics obtained from nag_normal_scores_exact (g01dac).

10 Example

A program to compute the variance-covariance matrix for a sample of size 6. nag_normal_scores_exact (g01dac) is called to provide values for exp1, exp2 and sumssq.

10.1 Program Text

/* nag_normal_scores_var (g01dcc) Example Program.
 * Copyright 2014 Numerical Algorithms Group.
 * Mark 7b revised, 2004.
 */
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg01.h>

int main(void)
{

/* Scalars */
 double errest, etol, exp1, exp2, sumssq;
 Integer exit_status, i, j, k, n, vec_elem;
 NagError fail;

/* Arrays */
 double *pp = 0, *vec = 0;
 INIT_FAIL(fail);

printf("nag_normal_scores_var (g01dcc) Example Program Results
");
etol = 1e-4;
exit_status = 0;
n = 6;

/* Allocate memory */
if (!((pp = NAG_ALLOC(n, double)) ||
 (vec = NAG_ALLOC(n*(n+1)/2, double)))
 {
 printf("Allocation failure
");
 exit_status = -1;
 goto END;
 }

/* nag_normal_scores_exact (g01dac).
 * Normal scores, accurate values
 */
nag_normal_scores_exact(n, pp, etol, &errest, &fail);
if (fail.code != NE_NOERROR)
 {
 printf("Error from nag_normal_scores_exact (g01dac).\n",
 fail.message);
 exit_status = 1;
 goto END;
 }

/Mark 25/
exp1 = pp[5];
exp2 = pp[4];
sumssq = 0.0;
for (i = 1; i <= 6; ++i)
 sumssq += pp[i - 1] * pp[i - 1];

/* nag_normal_scores_var (g01dcc).
 * Normal scores, approximate variance-covariance matrix
 */
ag_normal_scores_var(n, exp1, exp2, sumssq, vec, &fail);
if (fail.code != NE_NOERROR)
{
 printf("Error from nag_normal_scores_exact (g01dac).\n%s\n", fail.message);
 exit_status = 1;
go to END;
}

printf("\nSample size = %2\nNAG_IFMT\n\n\n", n);
printf("Variance-covariance matrix\n");
k = 1;
for (j = 1; j <= n; ++j)
{
 vec_elem = 1;
 for (i = k; i <= k + j - 1; ++i)
 {
 printf("%8.4f%s", vec[i - 1], vec_elem%6 == 0?"\n":" ");
 vec_elem++;
 }
 printf("\n");
k += j;
}
END:
NAG_FREE(pp);
NAG_FREE(vec);

return exit_status;
}

10.2 Program Data
None.

10.3 Program Results
nag_normal_scores_var (g01dcc) Example Program Results

Sample size = 6

Variance-covariance matrix
0.4159
0.2085 0.2796
0.1394 0.1889 0.2462
0.1025 0.1397 0.1834 0.2462
0.0774 0.1060 0.1397 0.1889 0.2796
0.0563 0.0774 0.1025 0.1394 0.2085 0.4159