1 Purpose

nag_normal_scores_exact (g01dac) computes a set of Normal scores, i.e., the expected values of an ordered set of independent observations from a Normal distribution with mean 0.0 and standard deviation 1.0.

2 Specification

```c
#include <nag.h>
#include <nagg01.h>
void nag_normal_scores_exact (Integer n, double pp[], double etol,
    double *errest, NagError *fail)
```

3 Description

If a sample of \(n \) observations from any distribution (which may be denoted by \(x_1, x_2, \ldots, x_n \)), is sorted into ascending order, the \(r \)th smallest value in the sample is often referred to as the \(r \)th ‘order statistic’, sometimes denoted by \(x_r \) (see Kendall and Stuart (1969)).

The order statistics therefore have the property

\[
x_{(1)} \leq x_{(2)} \leq \cdots \leq x_{(n)}.
\]

(If \(n = 2r + 1 \), \(x_{r+1} \) is the sample median.)

For samples originating from a known distribution, the distribution of each order statistic in a sample of given size may be determined. In particular, the expected values of the order statistics may be found by integration. If the sample arises from a Normal distribution, the expected values of the order statistics are referred to as the ‘Normal scores’. The Normal scores provide a set of reference values against which the order statistics of an actual data sample of the same size may be compared, to provide an indication of Normality for the sample. A plot of the data against the scores gives a normal probability plot.

Normal scores have other applications; for instance, they are sometimes used as alternatives to ranks in nonparametric testing procedures.

nag_normal_scores_exact (g01dac) computes the \(r \)th Normal score for a given sample size \(n \) as

\[
E(x_{(r)}) = \int_{-\infty}^{x_{(r)}} x_r dG_r,
\]

where

\[
dG_r = \frac{A_r^{-1}(1 - A_r)^{n-r} dA_r}{\beta(r, n-r+1)}, \quad A_r = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x_r} e^{-t^2/2} dt, \quad r = 1, 2, \ldots, n,
\]

and \(\beta \) denotes the complete beta function.

The function attempts to evaluate the scores so that the estimated error in each score is less than the value \(\text{etol} \) specified by you. All integrations are performed in parallel and arranged so as to give good speed and reasonable accuracy.

4 References

5 Arguments

1: \(n \) – Integer \(\text{Input} \)

 \text{On entry:} \ n, \text{ the size of the set.}

 \text{Constraint:} \ n > 0.

2: \(pp[i-1] \) – double \(\text{Output} \)

 \text{On exit:} \text{ the Normal scores.} \ pp[i-1] \text{ contains the value } E(x(i)) \text{, for } i = 1, 2, \ldots, n.

3: \(etol \) – double \(\text{Input} \)

 \text{On entry:} \text{ the maximum value for the estimated absolute error in the computed scores.}

 \text{Constraint:} \ etol > 0.0.

4: \(errest \) – double * \(\text{Output} \)

 \text{On exit:} \text{ a computed estimate of the maximum error in the computed scores (see Section 7).}

5: \(fail \) – NagError * \(\text{Input/Output} \)

 \text{The NAG error argument (see Section 3.6 in the Essential Introduction).}

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM

On entry, argument \(\langle\text{value}\rangle \) had an illegal value.

NE_ERROR_ESTIMATE

The function was unable to estimate the scores with estimated error less than \(etol \).

NE_INT

On entry, \(n = \langle\text{value}\rangle \).

\text{Constraint:} \ n > 0.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.

See Section 3.6.6 in the Essential Introduction for further information.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.

See Section 3.6.5 in the Essential Introduction for further information.

NE_REAL

On entry, \(etol = \langle\text{value}\rangle \).

\text{Constraint:} \ etol > 0.0.
7 Accuracy

Errors are introduced by evaluation of the functions dG_r and errors in the numerical integration process. Errors are also introduced by the approximation of the true infinite range of integration by a finite range $[a, b]$ but a and b are chosen so that this effect is of lower order than that of the other two factors. In order to estimate the maximum error the functions dG_r are also integrated over the range $[a, b]$. nag_normal_scores_exact (g01dac) returns the estimated maximum error as

$$
errest = \max_r \left[\max(|a|, |b|) \times \left| \int_a^b dG_r - 1.0 \right| \right].$$

8 Parallelism and Performance

Not applicable.

9 Further Comments

The time taken by nag_normal_scores_exact (g01dac) depends on etol and n. For a given value of etol the timing varies approximately linearly with n.

10 Example

The program below generates the Normal scores for samples of size 5, 10, 15, and prints the scores and the computed error estimates.

10.1 Program Text

```c
/* nag_normal_scores_exact (g01dac) Example Program. *
 * Copyright 2014 Numerical Algorithms Group.
 * * Mark 7, 2001.
 */
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg01.h>

int main(void)
{
   /* Scalars */
   double errest, etol;
   NagError fail;
   Integer exit_status = 0, i, j, n, nmax;

   /* Arrays */
   double *pp = 0;

   INIT_FAIL(fail);

   printf("nag_normal_scores_exact (g01dac) Example Program Results\n");

   etol = 0.001;
   nmax = 15;

   /* Allocate memory */
   if (!((pp = NAG_ALLOC(nmax, double)))
      { printf("Allocation failure\n");
        exit_status = -1;
        goto END;
      }

   for (j = 5; j <= nmax; j += 5)
      {
```
n = j;
/* nag_normal_scores_exact (g01dac).
 * Normal scores, accurate values
 */
nag_normal_scores_exact(n, pp, etol, &errest, &fail);

if (fail.code != NE_NOERROR)
{
 printf("Error from nag_normal_scores_exact (g01dac).\n%s\n", fail.message);
 exit_status = 1;
 goto END;
}
printf("\nSet size = %2"NAG_IFMT"\n", n);
printf("Error tolerance (input) = %13.3e\n", etol);
printf("Error estimate (output) = %13.3e\n", errest);
printf("Normal scores\n");
for (i = 1; i <= n; ++i)
{
 printf("%10.3f", pp[i - 1]);
 printf(i%5 == 0 || i == n?"\n": "");
}
printf("\n");
}
END:
NAG_FREE(pp);

return exit_status;
}

10.2 Program Data
None.

10.3 Program Results
nag_normal_scores_exact (g01dac) Example Program Results
Set size = 5
Error tolerance (input) = 1.000e-03
Error estimate (output) = 9.080e-09
Normal scores
-1.163 -0.495 0.000 0.495 1.163
Set size = 10
Error tolerance (input) = 1.000e-03
Error estimate (output) = 1.484e-08
Normal scores
-1.539 -1.001 -0.656 -0.376 -0.123 0.123 0.376 0.656 1.001 1.539
Set size = 15
Error tolerance (input) = 1.000e-03
Error estimate (output) = 2.218e-08
Normal scores
-1.736 -1.248 -0.948 -0.715 -0.516
-0.335 -0.165 0.000 0.165 0.335
0.516 0.715 0.948 1.248 1.736

This shows a Q-Q plot for a randomly generated set of data. The normal scores have been calculated using `nag_normal_scores_exact (g01dac)` and the sample quantiles obtained by sorting the observed data using `nag_double_sort (m01cac)`. A reference line at $y = x$ is also shown.

Example Program
Q-Q Plot for a Random Set of Data
Using Exact Normal Scores