NAG Library Function Document

nag_summary_stats_onevar_combine (g01auc)

1 Purpose

nag_summary_stats_onevar_combine (g01auc) combines sets of summaries produced by
nag_summary_stats_onevar (g01atc).

2 Specification

```c
#include <nag.h>
#include <nagg01.h>

void nag_summary_stats_onevar_combine (Integer b, const double mrcomm[],
    Integer *pn, double *xmean, double *xsd, double *xsx, double *xkurt,
    double *xmin, double *xmax, double rcomm[], NagError *fail)
```

3 Description

Assume a dataset containing \(n \) observations, denoted by \(x = \{ x_i : i = 1, 2, \ldots, n \} \) and a set of weights,
\(w = \{ w_i : i = 1, 2, \ldots, n \} \), has been split into \(b \) blocks, and each block summarised via a call to
nag_summary_stats_onevar (g01atc). Then nag_summary_stats_onevar_combine (g01auc) takes the \(b \)
communication arrays returned by nag_summary_stats_onevar (g01atc) and returns the mean (\(\bar{x} \)),
standard deviation (\(s_2 \)), coefficients of skewness (\(s_3 \)) and kurtosis (\(s_4 \)), and the maximum and minimum
values for the whole dataset.

For a definition of \(\bar{x}, s_2, s_3 \) and \(s_4 \) see Section 3 in nag_summary_stats_onevar (g01atc).

4 References

5 Arguments

1: \(b \) – Integer

 Input

 On entry: \(b \), the number of blocks the full dataset was split into.

 Constraint: \(b \geq 1 \).

2: \(\text{mrcomm}[20 \times b] \) – const double

 Communication Array

 Note: where \(\text{MRCOMM}(i, j) \) appears in this document, it refers to the array element
 \(\text{mrcomm}[(j - 1) \times 20 + i - 1] \).

 On entry: the \(j \)th column of \(\text{MRCOMM} \) must contain the information returned in \(\text{rcomm} \) from
 one of the runs of nag_summary_stats_onevar (g01atc).

3: \(\text{pn} \) – Integer

 Output

 On exit: the number of valid observations, that is the number of observations with \(w_i > 0 \), for
 \(i = 1, 2, \ldots, n \).

4: \(\text{xmean} \) – double

 Output

 On exit: \(\bar{x} \), the mean.
5: xsd – double *
 On exit: s_2, the standard deviation.

6: xskew – double *
 On exit: s_3, the coefficient of skewness.

7: xkurt – double *
 On exit: s_4, the coefficient of kurtosis.

8: xmin – double *
 On exit: the smallest value.

9: xmax – double *
 On exit: the largest value.

 Communication Array
 On exit: an amalgamation of the information held in mrcomm. This is in the same format as rcomm from nag_summary_stats_onevar (g01atc).
 If rcomm is NULL, rcomm is not referenced.

11: fail – NagError *
 The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM
On entry, argument ⟨value⟩ had an illegal value.

NE_CASES_ONE
On exit we were unable to calculate xsd, xskew or xkurt. A value of 0 has been returned.

NE_CASES_ZERO
On entry, the number of valid observations is zero.

NE_ILLEGAL_COMM
On entry, mrcomm is not in the expected format.

NE_INT
On entry, $b = ⟨value⟩$.
Constraint: $b \geq 1$.

NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

NE_ZERO_VARIANCE
On exit we were unable to calculate x_{skew} or x_{kurt}. A value of 0 has been returned.

7 Accuracy
Not applicable.

8 Parallelism and Performance
Not applicable.

9 Further Comments
The order that the b communication arrays are stored in $mrcomm$ is arbitrary. Different orders can lead to slightly different results due to numerical accuracy of floating-point calculations.

Both nag_summary_stats_onevar_combine (g01auc) and nag_summary_stats_onevar (g01atc) consolidate results from multiple summaries. Whereas the former can only be used to combine summaries calculated sequentially, the latter combines summaries calculated in an arbitrary order allowing, for example, summaries calculated on different processing units to be combined.

10 Example
This example summarises some simulated data. The data is supplied in three blocks, the first consisting of 21 observations, the second 51 observations and the last 28 observations. Summaries are produced for each block of data separately and then an overall summary is produced.

10.1 Program Text
/* nag_summary_stats_onevar_combine (g01auc) Example Program. *
 * Copyright 2014 Numerical Algorithms Group.
 * Mark 24, 2013.
 */
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg01.h>

#define MRCOMM(I, J) mrcomm[(J)*20+(I)]

int main(void)
{
 /* Integer scalar and array declarations */
 Integer b, i, iwt, j, nb, pn;
 Integer exit_status = 0;

 /* NAG structures and types */
 NagError fail;

 /* Double scalar and array declarations */
 double xkurt, xmax, xmean, xmin, xsd, xskew;
 double rcomm[20];

double *mrcomm = 0, *wt = 0, *x = 0;

/* Initialise the error structure */
INIT_FAIL(fail);

printf("nag_summary_stats_onevar_combine (g01auc) Example Program Results\n\n");

/*@ Skip heading in data file */
#define _WIN32
scanf_s("%*[^\n]"); // Windows
#else
scanf("%*[^\n]"); // Unix
#endif

/* Read in the number of block of data we have */
#define _WIN32
scanf_s("%"NAG_IFMT"%*[\n]", &b);
#else
scanf("%"NAG_IFMT"%*[\n]", &b);
#endif

if (!(mrcomm = NAG_ALLOC(20*b, double)))
{
 printf("Allocation failure\n");
 exit_status = -1;
 goto END;
}

/* Loop over each block of data */
for (j = 0; j < b; j++)
{
 /* Read in the number of observations in this block and a flag indicating
 whether weights have been supplied (iwt = 1) or not (iwt = 0) */
 #define _WIN32
 scanf_s("%"NAG_IFMT"%"NAG_IFMT"%*[\n]", &nb, &iwt);
 #else
 scanf("%"NAG_IFMT"%"NAG_IFMT"%*[\n]", &nb, &iwt);
 #endif

 /* Reallocate X to the required size */
 NAG_FREE(x);
 if (!(x = NAG_ALLOC(nb, double)))
 {
 printf("Allocation failure\n");
 exit_status = -2;
 goto END;
 }

 /* Read in the data for this block */
 if (iwt)
 {
 /* Weights supplied, so reallocate WT to the required size */
 NAG_FREE(wt);
 if (!(wt = NAG_ALLOC(nb, double)))
 {
 printf("Allocation failure\n");
 exit_status = -3;
 goto END;
 }

 for (i = 0; i < nb; i++)
 #define _WIN32
 scanf_s("%lf%lf", &x[i], &wt[i]);
 #else
 scanf("%lf%lf", &x[i], &wt[i]);
 #endif
 }
 else
 {
 /* No weights */
 NAG_FREE(wt);
 }
}
wt = 0;
for (i = 0; i < nb; i++)
#ifdef _WIN32
 scanf_s("%lf", &x[i]);
#else
 scanf("%lf", &x[i]);
#endif
#ifdef _WIN32
 scanf_s("%*[\n]");
#else
 scanf("%*[\n]");
#endif
/* Call nag_summary_stats_onevar (g01atc) to summarise this block of data */
pn = 0;
nag_summary_stats_onevar(nb, x, wt, &pn, &xmean, &xsd, &xskew, &xkurt, &xmin, &xmax, rcomm, &fail);
if (fail.code != NE_NOERROR && fail.code != NE_CASES_ONE && fail.code != NE_ZERO_VARIANCE && fail.code != NE_CASES_ZERO)
{
 printf("Error from nag_summary_stats_onevar (g01atc).\n%s\n", fail.message);
 exit_status = 1;
 goto END;
}
/* Save RCOMM for future reference */
for (i = 0; i < 20; i++)
 MRCOMM(i,j) = rcomm[i];
/* Display the results for this block */
printf(" %"NAG_IFMT" valid observations\n", pn);
if (fail.code == NE_CASES_ONE)
{
 printf(" Unable to calculate the standard deviation,\n");
 printf(" skewness or kurtosis\n");
}
else
{
 printf(" Std devn %13.2f\n", xsd);
 if (fail.code == NE_ZERO_VARIANCE)
 printf(" Unable to calculate the skewness and kurtosis\n");
 else
 {
 printf(" Skewness %13.2f\n", xskew);
 printf(" Kurtosis %13.2f\n", xkurt);
 }
}
printf(" Minimum %13.2f\n", xmin);
printf(" Maximum %13.2f\n", xmax);
}

/* Call nag_summary_stats_onevar_combine (g01auc) to combine the summaries across all the blocks */
nag_summary_stats_onevar_combine(b, mrcomm, &pn, &xmean, &xsd, &xskew, &xkurt, &xmin, &xmax, rcomm, &fail);
if (fail.code != NE_NOERROR)
{
 printf("Error from nag_summary_stats_onevar_combine (g01auc).\n%s\n", fail.message);
 exit_status = 2;
goto END;

/* Display the combined results */
printf(" Summary for the combined data\n");
if (fail.code == NE_CASES_ZERO)
 printf(" No valid observations supplied. All weights are zero.\n");
else
{
 printf(" %"NAG_IFMT" valid observations\n", pn);
 printf(" Mean %13.2f\n", xmean);
 if (fail.code == NE_CASES_ONE)
 printf(" Unable to calculate the standard deviation,");
 printf(" skweness or kurtosis\n");
}
else
{
 printf(" Std devn %13.2f\n", xsd);
 if (fail.code == NE_ZERO_VARIANCE)
 printf(" Unable to calculate the skewness and kurtosis\n");
 else
 {
 printf(" Skewness %13.2f\n", xskew);
 printf(" Kurtosis %13.2f\n", xkurt);
 }
}
printf(" Minimum %13.2f\n", xmin);
printf(" Maximum %13.2f\n", xmax);
}
END:
NAG_FREE(x);
NAG_FREE(wt);
NAG_FREE(mrcomm);
return(exit_status);

10.2 Program Data

nag_summary_stats_onevar_combine (g01auc) Example Program Data
3
 :: b
21 1
 -0.62 4.91
 -1.72 3.90
 2.00 1.17
 6.15 2.66
 4.87 3.59
 6.88 4.83
 -0.72 1.72
 2.23 4.74
 -0.15 3.94
 -8.74 0.51
 3.61 3.90
 :: End of x,wt for 1st block
51 0
 :: nb,iwt (1st block)
-0.66 -2.39 -6.25 1.23 2.27 -2.27
10.12 8.29 -2.99 8.71 -0.74 0.02
1.22 1.70 4.30 2.99 -0.83 -1.00
6.57 2.32 -3.47 -1.41 -5.26 0.53
1.80 4.79 -3.04 1.20 -3.21 -3.75
0.86 1.27 -5.95 -5.27 1.63 3.59
-0.01 -1.38 -4.71 -4.82 3.55 0.46
2.57 1.76 -4.05 1.23 -1.99 3.20
-0.65 8.42 -6.01
 :: End of x for 2nd block
28 0
 :: nb,iwt (3rd block)
10.3 Program Results

nag_summary_stats_onevar_combine (g01auc) Example Program Results

Summary for block 1
21 valid observations
- Mean: 0.73
- Std devn: 4.40
- Skewness: -0.05
- Kurtosis: -1.00
- Minimum: -8.74
- Maximum: 7.65

Summary for block 2
51 valid observations
- Mean: 0.28
- Std devn: 3.96
- Skewness: 0.46
- Kurtosis: -0.16
- Minimum: -6.25
- Maximum: 10.12

Summary for block 3
28 valid observations
- Mean: 0.48
- Std devn: 4.65
- Skewness: 0.19
- Kurtosis: -0.58
- Minimum: -8.86
- Maximum: 10.25

Summary for the combined data
100 valid observations
- Mean: 0.51
- Std devn: 4.24
- Skewness: 0.18
- Kurtosis: -0.59
- Minimum: -8.86
- Maximum: 10.25