1 Purpose

nag_summary_stats_1var (g01aac) calculates the mean, standard deviation, coefficients of skewness and kurtosis, and the maximum and minimum values for a set of ungrouped data. Weighting may be used.

2 Specification

```c
#include <nag.h>
#include <nagg01.h>

void nag_summary_stats_1var (Integer n, const double x[], const double wt[],
                          Integer *nvalid, double *xmean, double *xsd, double *xskew,
                          double *xkurt, double *xmin, double *xmax, double *wsum, NagError *fail)
```

3 Description

The data consist of a single sample of \(n \) observations, denoted by \(x_i \), with corresponding weights, \(w_i \), for \(i = 1, 2, \ldots, n \).

If no specific weighting is required, then each \(w_i \) is set to 1.

The quantities computed are:

(a) The sum of the weights

\[
W = \sum_{i=1}^{n} w_i.
\]

(b) Mean

\[
\bar{x} = \frac{\sum_{i=1}^{n} w_i x_i}{W}.
\]

(c) Standard deviation

\[
s_2 = \sqrt{\frac{1}{d} \sum_{i=1}^{n} w_i (x_i - \bar{x})^2}, \quad \text{where} \quad d = W - \sum_{i=1}^{n} w_i^2.
\]

(d) Coefficient of skewness

\[
s_3 = \frac{1}{d \times s_2^3} \sum_{i=1}^{n} w_i (x_i - \bar{x})^3.
\]

(e) Coefficient of kurtosis

\[
s_4 = \frac{1}{d \times s_2^4} \sum_{i=1}^{n} w_i (x_i - \bar{x})^4 - 3.
\]

(f) Maximum and minimum elements of the sample.
The number of observations for which \(w_i > 0 \), i.e., the number of valid observations. Suppose \(m \) observations are valid, then the quantities in (c), (d) and (e) will be computed if \(m \geq 2 \), and will be based on \(m - 1 \) degrees of freedom. The other quantities are evaluated provided \(m \geq 1 \).

4 References
None.

5 Arguments
1: \(n \) – Integer
 \textit{Input}
 \textit{On entry:} \(n \), the number of observations.
 \textit{Constraint:} \(n \geq 1 \).

2: \(x[n] \) – const double
 \textit{Input}
 \textit{On entry:} the sample observations, \(x_i \), for \(i = 1, 2, \ldots, n \).

3: \(wt[n] \) – const double
 \textit{Input}
 \textit{On entry:} if weights are being supplied then the elements of \(wt \) must contain the weights associated with the observations, \(w_i \), for \(i = 1, 2, \ldots, n \).
 If weights are not supplied then \(wt \) must be set to \textbf{NULL}.

4: \(nvalid \) – Integer *
 \textit{Output}
 \textit{On exit:} is used to indicate the number of valid observations, \(m \); see Section 3 (g).

5: \(xmean \) – double *
 \textit{Output}
 \textit{On exit:} the mean, \(\bar{x} \).

6: \(xsd \) – double *
 \textit{Output}
 \textit{On exit:} the standard deviation, \(s_2 \).

7: \(xskew \) – double *
 \textit{Output}
 \textit{On exit:} the coefficient of skewness, \(s_3 \).

8: \(xkurt \) – double *
 \textit{Output}
 \textit{On exit:} the coefficient of kurtosis, \(s_4 \).

9: \(xmin \) – double *
 \textit{Output}
 \textit{On exit:} the smallest value in the sample.

10: \(xmax \) – double *
 \textit{Output}
 \textit{On exit:} the largest value in the sample.

11: \(wsum \) – double *
 \textit{Output}
 \textit{On exit:} the sum of the weights in the array \(wt \), that is \(\sum_{i=1}^{n} w_i \). This will be \(n \) if weighted estimates are not used.
6 Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM
On entry, argument `<value>` had an illegal value.

NE_CASES_ONE
The number of valid cases is one. The standard deviation and coefficients of skewness and of kurtosis cannot be calculated.

NE_CASES_ZERO
The number of valid cases is zero.

NE_INT_ARG_LE
On entry, `n = <value>`. Constraint: `n ≥ 1`.

NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG. See Section 3.6.6 in the Essential Introduction for further information.

NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly. See Section 3.6.5 in the Essential Introduction for further information.

NE_REAL_ARG_LT
On entry, `wt[<value>] = <value>`. Constraint: `wt[<value>] ≥ 0.0`.

7 Accuracy
The method used is believed to be stable.

8 Parallelism and Performance
Not applicable.

9 Further Comments
The time taken by `nag_summary_stats_1var` is approximately proportional to `n`.

10 Example
This example summarises an (optionally weighted) dataset and displays the results.
10.1 Program Text

/* nag_summary_stats_1var (g01aac) Example Program. */

* Copyright 2014 Numerical Algorithms Group.

* Mark 1, 1990.
*
* Mark 5 revised, 1998.
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagg01.h>

int main(void)
{
 Integer exit_status = 0, i, j, n, nprob, nvalid, weight;
 NagError fail;
 double wsum, *wt = 0, *x = 0, xkurt, xmax, xmean, xmin, xsd, xskew;

 INIT_FAIL(fail);

 /* Skip heading in data file */

 ifdef _WIN32
 scanf_s("%*[\n]");
 #else
 scanf("%*[\n]");
 #endif
 printf("nag_summary_stats_1var (g01aac) Example Program Results\n");

 ifdef _WIN32
 scanf_s("%"NAG_IFMT" %"NAG_IFMT", &n, &weight);
 #else
 scanf("%"NAG_IFMT" %"NAG_IFMT", &n, &weight);
 #endif
 printf("Problem %5"NAG_IFMT"\n", j);
 printf("Number of cases %"NAG_IFMT"\n", n);
 if (n >= 1)
 {
 if (!(wt = NAG_ALLOC(n, double)) ||
 !(x = NAG_ALLOC(n, double)))
 {
 printf("Allocation failure\n");
 exit_status = -1;
 goto END;
 }

 for (i = 0; i < n; i++)
 {
 #ifdef _WIN32
 scanf_s("%lf", &x[i]);
 #else
 scanf("%lf", &x[i]);
 #endif
 }
 }

 else
 {
 printf("Invalid n.\n");
 exit_status = 1;
 return exit_status;
 }

 for (i = 0; i < n; i++)
 {
 g01aac;
 }

END:
 return exit_status;

}
printf("%12.1f%c", x[i], (i%5 == 4 || i == n-1) ? \n: ‘ ’);
if (weight)
{
 printf("Weights as input -\n");
 for (i = 0; i < n; i++)
 scanf("%lf", &wt[i]);
#endif
for (i = 0; i < n; i++)
 printf("%12.1f%c", wt[i], (i%5 == 4 || i == n-1) ? \n: ‘ ’);
/* nag_summary_stats_lvar (g01aac).
* Mean, variance, skewness, kurtosis, etc., one variable,
* from raw data
*/
nag_summary_stats_lvar(n, x, wt, &nvalid, &xmean, &xsd, &xskew,
 &xkurt, &xmin, &xmax, &wsum, &fail);
else /* nag_summary_stats_lvar (g01aac), see above. */
nag_summary_stats_lvar(n, x, (double *) 0, &nvalid, &xmean, &xsd,
 &xskew, &xkurt, &xmin, &xmax, &wsum, &fail);
if (fail.code == NE_NOERROR)
{
 printf("\n");
 printf("Successful call of "
 "nag_summary_stats_lvar (g01aac)\n");
 printf("No. of valid cases %9"NAG_IFMT"\n", nvalid);
 printf("Mean %13.1f\n", xmean);
 printf("Std devn %13.1f\n", xsd);
 printf("Skewness %13.1f\n", xskew);
 printf("Kurtosis %13.1f\n", xkurt);
 printf("Minimum %13.1f\n", xmin);
 printf("Maximum %13.1f\n", xmax);
 printf("Sum of weights %13.1f\n", wsum);
}
else
{
 printf("Unsuccessful call of "
 "nag_summary_stats_lvar (g01aac)\n");
 printf("%s \n", fail.message);
 if (fail.code == NE_CASES_ONE)
 {
 printf("No. of valid cases %9"NAG_IFMT"\n", nvalid);
 printf("Mean %13.1f\n", xmean);
 printf("Minimum %13.1f\n", xmin);
 printf("Maximum %13.1f\n", xmax);
 printf("Sum of weights %13.1f\n", wsum);
 printf("Std devn and coeffts of skewness\n");
 printf("and kurtosis not defined\n");
 exit_status = 2;
 }
 else
 {
 exit_status = 1;
 goto END;
 }
}
NAG_FREE(wt);
NAG_FREE(x);
}
END:
NAG_FREE(wt);
NAG_FREE(x);
return exit_status;
10.2 Program Data

nag_summary_stats_1var (g01aac) Example Program Data
1
24 0
193.0 216.0 112.0 161.0 92.0 140.0 38.0 33.0 279.0 249.0
473.0 339.0 60.0 130.0 20.0 50.0 257.0 284.0 447.0 52.0
67.0 61.0 150.0 2200.0

10.3 Program Results

nag_summary_stats_1var (g01aac) Example Program Results
Problem 1
Number of cases 24
Data as input -
 193.0 216.0 112.0 161.0 92.0
 140.0 38.0 33.0 279.0 249.0
 473.0 339.0 60.0 130.0 20.0
 50.0 257.0 284.0 447.0 52.0
 67.0 61.0 150.0 2200.0

Successful call of nag_summary_stats_1var (g01aac)
No. of valid cases 24
Mean 254.3
Std devn 433.5
Skewness 3.9
Kurtosis 14.7
Minimum 20.0
Maximum 2200.0
Sum of weights 24.0