1 Purpose

nag_zsp_norm (f16ugc) calculates the value of the 1-norm, the \(\infty\)-norm, the Frobenius norm or the maximum absolute value of the elements of a complex \(n\) by \(n\) symmetric matrix, stored in packed form.

2 Specification

```c
#include <nag.h>
#include <nagf16.h>

void nag_zsp_norm (Nag_OrderType order, Nag_NormType norm,
                   Nag_UploType uplo, Integer n, const Complex ap[], double *r,
                   NagError *fail)
```

3 Description

Given a complex \(n\) by \(n\) symmetric matrix, \(A\), in packed storage, nag_zsp_norm (f16ugc) calculates one of the values given by

\[
\|A\|_1 = \max_j \sum_{i=1}^{n} |a_{ij}|,
\]

\[
\|A\|_\infty = \max_i \sum_{j=1}^{n} |a_{ij}|,
\]

\[
\|A\|_F = \left(\sum_{i=1}^{n} \sum_{j=1}^{n} |a_{ij}|^2 \right)^{1/2}
\]

or

\[
\max_{i,j} |a_{ij}|.
\]

Note that, since \(A\) is symmetric, \(\|A\|_1 = \|A\|_\infty\).

4 References

5 Arguments

1. `order` – Nag_OrderType

 On entry: the `order` argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by
order = Nag_RowMajor. See Section 3.2.1.3 in the Essential Introduction for a more detailed explanation of the use of this argument.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: **norm** – Nag_NormType
Input

On entry: specifies the value to be returned.

norm = Nag_OneNorm
The 1-norm.

norm = Nag_InfNorm
The ∞-norm.

norm = Nag_FrobeniusNorm
The Frobenius (or Euclidean) norm.

norm = Nag_MaxNorm
The value $\max_{i,j} |a_{ij}|$ (not a norm).

Constraint: norm = Nag_OneNorm, Nag_InfNorm, Nag_FrobeniusNorm or Nag_MaxNorm.

3: **uplo** – Nag_UploType
Input

On entry: specifies whether the upper or lower triangular part of A is stored.

uplo = Nag_Upper
The upper triangular part of A is stored.

uplo = Nag_Lower
The lower triangular part of A is stored.

Constraint: uplo = Nag_Upper or Nag_Lower.

4: **n** – Integer
Input

On entry: n, the order of the matrix A.

If $n = 0$, then **n** is set to zero.

Constraint: n ≥ 0.

5: **ap[dim]** – const Complex
Input

Note: the dimension, dim, of the array ap must be at least max(1, $n \times (n + 1)/2$).

On entry: the n by n symmetric matrix A, packed by rows or columns.

The storage of elements A_{ij} depends on the **order** and **uplo** arguments as follows:

- if **order** = Nag_ColMajor and **uplo** = Nag_Upper,
 A_{ij} is stored in **ap**[$(j-1) \times j/2 + i - 1$], for $i \leq j$;
- if **order** = Nag_ColMajor and **uplo** = Nag_Lower,
 A_{ij} is stored in **ap**[$(2n-j) \times (j-1)/2 + i - 1$], for $i \geq j$;
- if **order** = Nag_RowMajor and **uplo** = Nag_Upper,
 A_{ij} is stored in **ap**[$(2n-i) \times (i-1)/2 + j - 1$], for $i \leq j$;
- if **order** = Nag_RowMajor and **uplo** = Nag_Lower,
 A_{ij} is stored in **ap**[$(i-1) \times i/2 + j - 1$], for $i \geq j$.

6: **r** – double *
Output

On exit: the value of the norm specified by **norm**.

7: **fail** – NagError *
Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).
6 Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM
On entry, argument \(<value>\) had an illegal value.

NE_INT
On entry, \(n = <value>\).
Constraint: \(n \geq 0\).

NE_INTERNAL_ERROR
An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

7 Accuracy
The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see Section 2.7 of Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001)).

8 Parallelism and Performance
Not applicable.

9 Further Comments
None.

10 Example
See Section 10 in nag_zspcon (f07quc).