NAG Library Function Document

nag_zhp_norm (f16udc)

1 Purpose
nag_zhp_norm (f16udc) calculates the value of the 1-norm, the \(\infty \)-norm, the Frobenius norm or the maximum absolute value of the elements of a complex \(n \) by \(n \) Hermitian matrix, stored in packed form.

2 Specification

```c
#include <nag.h>
#include <nagf16.h>
void nag_zhp_norm (Nag_OrderType order, Nag_NormType norm,
                   Nag_UploType uplo, Integer n, const Complex ap[],
                   double *r, NagError *fail)
```

3 Description

Given a complex \(n \) by \(n \) Hermitian matrix, \(A \), in packed storage, nag_zhp_norm (f16udc) calculates one of the values given by

\[
\|A\|_1 = \max_j \sum_{i=1}^{n} |a_{ij}|
\]

\[
\|A\|_\infty = \max_i \sum_{j=1}^{n} |a_{ij}|
\]

\[
\|A\|_F = \left(\sum_{i=1}^{n} \sum_{j=1}^{n} |a_{ij}|^2 \right)^{1/2}
\]

or

\[
\max_{i,j} |a_{ij}|
\]

Note that, since \(A \) is symmetric, \(\|A\|_1 = \|A\|_\infty \).

4 References

5 Arguments

1: \textbf{order} – Nag_OrderType

\textit{Input}

\textit{On entry:} the \textbf{order} argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by
order = Nag_RowMajor. See Section 3.2.1.3 in the Essential Introduction for a more detailed explanation of the use of this argument.

Constraint: \(\text{order} = \text{Nag_RowMajor} \) or \(\text{Nag_ColMajor} \).

2: \(\text{norm} \) – Nag_NormType

Input

On entry: specifies the value to be returned.

- \(\text{norm} = \text{Nag_OneNorm} \)
 The 1-norm.
- \(\text{norm} = \text{Nag_InfNorm} \)
 The \(\infty \)-norm.
- \(\text{norm} = \text{Nag_FrobeniusNorm} \)
 The Frobenius (or Euclidean) norm.
- \(\text{norm} = \text{Nag_MaxNorm} \)
 The value \(\max_{i,j} |a_{ij}| \) (not a norm).

Constraint: \(\text{norm} = \text{Nag_OneNorm} \), \(\text{Nag_InfNorm} \), \(\text{Nag_FrobeniusNorm} \) or \(\text{Nag_MaxNorm} \).

3: \(\text{uplo} \) – Nag_UploType

Input

On entry: specifies whether the upper or lower triangular part of \(A \) is stored.

- \(\text{uplo} = \text{Nag_Upper} \)
 The upper triangular part of \(A \) is stored.
- \(\text{uplo} = \text{Nag_Lower} \)
 The lower triangular part of \(A \) is stored.

Constraint: \(\text{uplo} = \text{Nag_Upper} \) or \(\text{Nag_Lower} \).

4: \(n \) – Integer

Input

On entry: \(n \), the order of the matrix \(A \).

If \(n = 0 \), then \(n \) is set to zero.

Constraint: \(n \geq 0 \).

5: \(\text{ap}[\text{dim}] \) – const Complex

Input

Note: the dimension, \(\text{dim} \), of the array \(\text{ap} \) must be at least \(\max(1, n \times (n + 1)/2) \).

On entry: the \(n \) by \(n \) Hermitian matrix \(A \), packed by rows or columns.

The storage of elements \(A_{ij} \) depends on the \(\text{order} \) and \(\text{uplo} \) arguments as follows:

- if \(\text{order} = \text{Nag_ColMajor} \) and \(\text{uplo} = \text{Nag_Upper} \),
 \(A_{ij} \) is stored in \(\text{ap}[(j - 1) \times j/2 + i - 1] \), for \(i \leq j \);
- if \(\text{order} = \text{Nag_ColMajor} \) and \(\text{uplo} = \text{Nag_Lower} \),
 \(A_{ij} \) is stored in \(\text{ap}[(2n - j) \times (j - 1)/2 + i - 1] \), for \(i \geq j \);
- if \(\text{order} = \text{Nag_RowMajor} \) and \(\text{uplo} = \text{Nag_Upper} \),
 \(A_{ij} \) is stored in \(\text{ap}[(2n - i) \times (i - 1)/2 + j - 1] \), for \(i \leq j \);
- if \(\text{order} = \text{Nag_RowMajor} \) and \(\text{uplo} = \text{Nag_Lower} \),
 \(A_{ij} \) is stored in \(\text{ap}[(i - 1) \times i/2 + j - 1] \), for \(i \geq j \).

6: \(r \) – double *

Output

On exit: the value of the norm specified by \(\text{norm} \).

7: \(\text{fail} \) – NagError *

Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).
6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM

On entry, argument \(\text{value}\) had an illegal value.

NE_INT

On entry, \(n = \text{value}\).
Constraint: \(n \geq 0\).

NE_INTERNAL_ERROR

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

7 Accuracy

The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see Section 2.7 of Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001)).

8 Parallelism and Performance

Not applicable.

9 Further Comments

None.

10 Example

See Section 10 in nag_zppcon (f07guc) and nag_zhpcon (f07puc).