NAG Library Function Document

nag_zge_norm (f16uac)

1 Purpose
nag_zge_norm (f16uac) calculates the value of the 1-norm, the ∞-norm, the Frobenius norm or the maximum absolute value of the elements of a complex m by n matrix.

2 Specification

```c
#include <nag.h>
#include <nagf16.h>

void nag_zge_norm (Nag_OrderType order, Nag_NormType norm, Integer m, 
                  Integer n, const Complex a[], Integer pda, double *r, NagError *fail)
```

3 Description

Given a complex m by n matrix, A, nag_zge_norm (f16uac) calculates one of the values given by

\[||A||_1 = \max_j \sum_{i=1}^{m} |a_{ij}|, \]

\[||A||_{\infty} = \max_i \sum_{j=1}^{n} |a_{ij}|, \]

\[||A||_F = \left(\sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^2 \right)^{1/2} \]

or

\[\max_{i,j} |a_{ij}|. \]

4 References

5 Arguments

1: order – Nag_OrderType

 Input

 On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by order = Nag_RowMajor. See Section 3.2.1.3 in the Essential Introduction for a more detailed explanation of the use of this argument.

 Constraint: order = Nag_RowMajor or Nag_ColMajor.
2: **norm** – Nag_NormType

Input

On entry: specifies the value to be returned.

Input

On entry: specifies the value to be returned.

norm = Nag_OneNorm
The 1-norm.

norm = Nag_InfNorm
The \(\infty\)-norm.

norm = Nag_FrobeniusNorm
The Frobenius (or Euclidean) norm.

norm = Nag_MaxNorm
The value \(\max_{i,j} |a_{ij}|\) (not a norm).

Constraint: norm = Nag_OneNorm, Nag_InfNorm, Nag_FrobeniusNorm or Nag_MaxNorm.

3: **m** – Integer

Input

On entry: \(m\), the number of rows of the matrix \(A\).

If \(m = 0\), then \(r\) is set to zero.

Constraint: \(m \geq 0\).

4: **n** – Integer

Input

On entry: \(n\), the number of columns of the matrix \(A\).

If \(n = 0\), then \(r\) is set to zero.

Constraint: \(n \geq 0\).

5: **a[dim]** – const Complex

Input

Note: the dimension, \(dim\), of the array \(a\) must be at least

\[
\max(1, pda \times n) \text{ when } order = Nag_ColMajor;
\]

\[
\max(1, m \times pda) \text{ when } order = Nag_RowMajor.
\]

If \(order = Nag_ColMajor\), \(A_{ij}\) is stored in \(a[(j - 1) \times pda + i - 1]\).

If \(order = Nag_RowMajor\), \(A_{ij}\) is stored in \(a[(i - 1) \times pda + j - 1]\).

On entry: the \(m\) by \(n\) matrix \(A\).

6: **pda** – Integer

Input

On entry: the stride separating row or column elements (depending on the value of \(order\)) in the array \(a\).

Constraints:

- if \(order = Nag_ColMajor\), \(pda \geq \max(1, m)\);
- if \(order = Nag_RowMajor\), \(pda \geq n\).

7: **r** – double *

Output

On exit: the value of the norm specified by \(norm\).

8: **fail** – NagError *

Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).
6 Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM
On entry, argument ⟨value⟩ had an illegal value.

NE_INT
On entry, m = ⟨value⟩.
Constraint: m ≥ 0.

On entry, n = ⟨value⟩.
Constraint: n ≥ 0.

NE_INT_2
On entry, pda = ⟨value⟩, m = ⟨value⟩.
Constraint: pda ≥ max(1,m).

On entry, pda = ⟨value⟩ and n = ⟨value⟩.
Constraint: pda ≥ n.

NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

7 Accuracy

The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see Section 2.7 of Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001)).

8 Parallelism and Performance

Not applicable.

9 Further Comments

None.

10 Example

See Section 10 in nag_zgecon (f07auc) and nag_ztrsna (f08qyc).