NAG Library Function Document

nag_dsb_norm (f16rec)

1 Purpose

nag_dsb_norm (f16rec) calculates the value of the 1-norm, the ∞-norm, the Frobenius norm or the maximum absolute value of the elements of a real n by n symmetric band matrix.

2 Specification

```c
#include <nag.h>
#include <nagf16.h>

void nag_dsb_norm (Nag_OrderType order, Nag_NormType norm,
                  Nag_UploType uplo, Integer n, Integer k, const double ab[],
                  Integer pdab, double *r, NagError *fail)
```

3 Description

Given a real n by n symmetric band matrix, A, nag_dsb_norm (f16rec) calculates one of the values given by

\[\|A\|_1 = \max_j \sum_{i=1}^{n} |a_{ij}|, \]
\[\|A\|_\infty = \max_i \sum_{j=1}^{n} |a_{ij}|, \]
\[\|A\|_F = \left(\sum_{i=1}^{n} \sum_{j=1}^{n} |a_{ij}|^2 \right)^{1/2} \]

or

\[\max_{i,j} |a_{ij}|. \]

Note that, since A is symmetric, \(\|A\|_1 = \|A\|_\infty \).

4 References

5 Arguments

1: \textbf{order} – Nag_OrderType

\textit{Input}

On entry: the \textbf{order} argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by
order = Nag_RowMajor. See Section 3.2.1.3 in the Essential Introduction for a more detailed explanation of the use of this argument.

Constraint: **order** = Nag_RowMajor or Nag_ColMajor.

2: **norm** – Nag_NormType

Input

On entry: specifies the value to be returned.

norm = Nag_OneNorm
The 1-norm.

norm = Nag_InfNorm
The ∞-norm.

norm = Nag_FrobeniusNorm
The Frobenius (or Euclidean) norm.

norm = Nag_MaxNorm
The value $\max_{i,j} |a_{ij}|$ (not a norm).

Constraint: **norm** = Nag_OneNorm, Nag_InfNorm, Nag_FrobeniusNorm or Nag_MaxNorm.

3: **uplo** – Nag_UploType

Input

On entry: specifies whether the upper or lower triangular part of A is stored.

uplo = Nag_Upper
The upper triangular part of A is stored.

uplo = Nag_Lower
The lower triangular part of A is stored.

Constraint: **uplo** = Nag_Upper or Nag_Lower.

4: **n** – Integer

Input

On entry: n, the order of the matrix A.

If $n = 0$, then **n** is set to zero.

Constraint: **n** ≥ 0.

5: **k** – Integer

Input

On entry: k, the number of subdiagonals or superdiagonals of the matrix A.

Constraint: **k** ≥ 0.

6: **ab[**dim**]** – const double

Input

Note: the dimension, **dim**, of the array **ab** must be at least $\max(1, pdab \times **n**)$.

On entry: the n by n symmetric band matrix A.

This is stored as a notional two-dimensional array with row elements or column elements stored contiguously. The storage of elements of A_{ij}, depends on the **order** and **uplo** arguments as follows:

if **order** = Nag_ColMajor and **uplo** = Nag_Upper,

A_{ij} is stored in $ab[k + i - j + (j - 1) \times pdab]$, for $j = 1, \ldots, n$ and $i = \max(1, j - k), \ldots, j$;

if **order** = Nag_ColMajor and **uplo** = Nag_Lower,

A_{ij} is stored in $ab[i - j + (j - 1) \times pdab]$, for $j = 1, \ldots, n$ and $i = j, \ldots, \min(n, j + k)$;
if order = Nag_RowMajor and uplo = Nag_Upper,
 \(A_{ij} \) is stored in \(ab[j - i + (i - 1) \times \text{pdab}] \), for \(i = 1, \ldots, n \) and
 \(j = i, \ldots, \min(n, i + k); \)
if order = Nag_RowMajor and uplo = Nag_Lower,
 \(A_{ij} \) is stored in \(ab[k + j - i + (i - 1) \times \text{pdab}] \), for \(i = 1, \ldots, n \) and
 \(j = \max(1, i - k), \ldots, i. \)

7: pdab – Integer

 Input

 On entry: the stride separating row or column elements (depending on the value of order) of the
 matrix \(A \) in the array \(ab \).

 Constraint: \(\text{pdab} \geq k + 1. \)

8: r – double *

 Output

 On exit: the value of the norm specified by norm.

9: fail – NagError *

 Input/Output

 The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

 Dynamic memory allocation failed.

 See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM

 On entry, argument \(\langle \text{value} \rangle \) had an illegal value.

NE_INT

 On entry, \(k = \langle \text{value} \rangle. \)

 Constraint: \(k \geq 0. \)

 On entry, \(n = \langle \text{value} \rangle. \)

 Constraint: \(n \geq 0. \)

NE_INT_2

 On entry, \(\text{pdab} = \langle \text{value} \rangle, k = \langle \text{value} \rangle. \)

 Constraint: \(\text{pdab} \geq k + 1. \)

NE_INTERNAL_ERROR

 An unexpected error has been triggered by this function. Please contact NAG.

 See Section 3.6.6 in the Essential Introduction for further information.

NE_NO_LICENCE

 Your licence key may have expired or may not have been installed correctly.

 See Section 3.6.5 in the Essential Introduction for further information.

7 Accuracy

 The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see
 Section 2.7 of Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001)).
8 Parallelism and Performance
Not applicable.

9 Further Comments
None.

10 Example
See Section 10 in nag_dpbcon (f07hgc).