NAG Library Function Document

nag_zload (f16hbc)

1 Purpose
nag_zload (f16hbc) broadcasts a scalar into a complex vector.

2 Specification

```c
#include <nag.h>
#include <nagf16.h>
void nag_zload (Integer n, Complex alpha, Complex x[], Integer incx,
               NagError *fail)
```

3 Description
nag_zload (f16hbc) performs the operation

\[x \leftarrow (\alpha, \alpha, \ldots, \alpha)^\top, \]

where \(x \) is an \(n \)-element complex vector and \(\alpha \) is a complex scalar.

4 References
Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001) Basic Linear Algebra
Subprograms Technical (BLAST) Forum Standard University of Tennessee, Knoxville, Tennessee http://
www.netlib.org/blas/blas-forum/blas-report.pdf

5 Arguments

1: \(n \) – Integer
 \(\text{Input} \)
 \(\text{On entry: } n, \text{ the number of elements in } x. \)
 \(\text{Constraint: } n \geq 0. \)

2: \(\alpha \) – Complex
 \(\text{Input} \)
 \(\text{On entry: } \text{the scalar } \alpha. \)

3: \(x[\text{dim}] \) – Complex
 \(\text{Output} \)
 \(\text{Note: } \text{the dimension, } \text{dim}, \text{ of the array } x \text{ must be at least max}(1, 1 + (n - 1)|\text{incx}|)). \)
 \(\text{On exit: } \text{the scalar } \alpha \text{ scattered with a stride of } \text{incx}. \text{ Intermediate elements of } x \text{ are unchanged.} \)

4: \(\text{incx} \) – Integer
 \(\text{Input} \)
 \(\text{On entry: } \text{the increment in the subscripts of } x \text{ between successive elements of } x. \)
 \(\text{Constraint: } \text{incx} \neq 0. \)

5: \(\text{fail} \) – NagError *
 \(\text{Input/Output} \)
 \(\text{The NAG error argument (see Section 3.6 in the Essential Introduction).} \)
6 Error Indicators and Warnings

NE_ALLOC_FAIL
 Dynamic memory allocation failed.
 See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM
 On entry, argument \langle value\rangle had an illegal value.

NE_INT
 On entry, incx = \langle value\rangle.
 Constraint: incx ≠ 0.
 On entry, n = \langle value\rangle.
 Constraint: n ≥ 0.

NE_INTERNAL_ERROR
 An unexpected error has been triggered by this function. Please contact NAG.
 See Section 3.6.6 in the Essential Introduction for further information.

NE_NO_LICENCE
 Your licence key may have expired or may not have been installed correctly.
 See Section 3.6.5 in the Essential Introduction for further information.

7 Accuracy
The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see Section 2.7 of Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001)).

8 Parallelism and Performance
Not applicable.

9 Further Comments
None.

10 Example
The scalar 0.5 – 0.3i is loaded into a vector of length 4, stored in x with increment 2 (incx = 2).

10.1 Program Text
/* nag_zload (f16hbc) Example Program.
 * Copyright 2014 Numerical Algorithms Group.
 * * Mark 8, 2005.
 */
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf16.h>

int main(void)
{

/* Scalars */
Complex alpha;
Integer exit_status, i, incx, n, xlen;

/* Arrays */
Complex *x = 0;

/* Nag Types */
NagError fail;

exit_status = 0;
INIT_FAIL(fail);

printf("nag_zload (f16hbc) Example Program Results\n\n");

/* Skip heading in data file */
#ifndef _WIN32
 scanf_s("%*[\n] ");
#else
 scanf("%*[\n] ");
#endif

/* Read length of vector and increment. */
#ifndef _WIN32
 scanf_s("%"NAG_IFMT"%"NAG_IFMT"%*[\n] ", &n, &incx);
#else
 scanf("%"NAG_IFMT"%"NAG_IFMT"%*[\n] ", &n, &incx);
#endif

/* Read scalar parameter */
#ifndef _WIN32
 scanf(" (%lf , %lf) %*[\n] ", &alpha.re, &alpha.im);
#else
 scanf(" (%lf , %lf) %*[\n] ", &alpha.re, &alpha.im);
#endif

xlen = MAX(1, 1 + (n - 1)*ABS(incx));
if (n > 0)
{
 /* Allocate memory */
 if (!(x = NAG_ALLOC(xlen, Complex)))
 {
 printf("Allocation failure\n");
 exit_status = -1;
 goto END;
 }
}
else
{
 printf("Invalid n\n");
 exit_status = 1;
 return exit_status;
}

/* nag_zload (f16hbc). */
* Broadcast a complex scalar to a complex vector. *
*/
nag_zload(n, alpha, x, incx, &fail);
if (fail.code != NE_NOERROR)
{
 printf("Error from nag_zload.\n\n", fail.message);
 exit_status = 1;
 goto END;
}

/* Print x. */
printf("Loaded vector x:\n\n");
for (i = 0; i < xlen; i = i + incx)
 printf(" x[%1"NAG_IFMT"] = (%5.2f, %5.2f)\n", i, x[i].re, x[i].im);

Mark 25
END:
 NAG_FREE(x);
 return exit_status;
}

10.2 Program Data

nag_zload (f16hbc) Example Program Data

4 2 : n, incx the length and increment of x
(0.5,-0.3) : alpha

10.3 Program Results

nag_zload (f16hbc) Example Program Results

Loaded vector x:

 x[0] = (0.50, -0.30)
 x[2] = (0.50, -0.30)
 x[4] = (0.50, -0.30)
 x[6] = (0.50, -0.30)