NAG Library Function Document

nag_dload (f16fbc)

1 Purpose
nag_dload (f16fbc) broadcasts a scalar into a real vector.

2 Specification

```c
#include <nag.h>
#include <nagf16.h>

void nag_dload (Integer n, double alpha, double x[], Integer incx,
                 NagError *fail)
```

3 Description

nag_dload (f16fbc) performs the operation

\[x \leftarrow (\alpha, \alpha, \ldots, \alpha)^T, \]

where \(x \) is an \(n \)-element real vector and \(\alpha \) is a real scalar.

4 References

5 Arguments

1: \(n \) – Integer

 On entry: \(n \), the number of elements in \(x \).

 Constraint: \(n \geq 0 \).

2: \(\alpha \) – double

 On entry: the scalar \(\alpha \).

3: \(x[\text{dim}] \) – double

 Output

 Note: the dimension, \(\text{dim} \), of the array \(x \) must be at least \(\max(1, 1 + \left(n - 1 \right) \left| \text{incx} \right|) \).

 On exit: the scalar \(\alpha \) is scattered with a stride of \(\text{incx} \) in \(x \). Intermediate elements of \(x \) are unchanged.

4: \(\text{incx} \) – Integer

 On entry: the increment in the subscripts of \(x \) between successive elements of \(x \).

 Constraint: \(\text{incx} \neq 0 \).

5: \(\text{fail} \) – NagError *

 Input/Output

 The NAG error argument (see Section 3.6 in the Essential Introduction).
6 Error Indicators and Warnings

NE_ALLOC_FAIL
 Dynamic memory allocation failed.
 See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM
 On entry, argument <value> had an illegal value.

NE_INT
 On entry, incx = <value>.
 Constraint: incx ≠ 0.
 On entry, n = <value>.
 Constraint: n ≥ 0.

NE_INTERNAL_ERROR
 An unexpected error has been triggered by this function. Please contact NAG.
 See Section 3.6.6 in the Essential Introduction for further information.

NE_NO_LICENCE
 Your licence key may have expired or may not have been installed correctly.
 See Section 3.6.5 in the Essential Introduction for further information.

7 Accuracy

The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see Section 2.7 of Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001)).

8 Parallelism and Performance

Not applicable.

9 Further Comments

None.

10 Example

This example initializes four elements of a real vector, x, with increment 2, with the value α = 0.3.

10.1 Program Text

```c
/* nag_dload (f16fbc) Example Program.  *
 * Copyright 2014 Numerical Algorithms Group.  *
 * Mark 8, 2005.  *
 */
#include <stdio.h>
#include <nag.h>
#include <nagf16.h>
#include <nag_stdlib.h>

int main(void)
{

```
/* Scalars */
double alpha;
Integer exit_status, i, incx, n, xlen;

/* Arrays */
double *x = 0;

/* Nag Types */
NagError fail;

exit_status = 0;
INIT_FAIL(fail);

printf("nag_dload (f16fbc) Example Program Results\n\n");

/* Skip heading in data file */
#ifdef _WIN32
scanf_s("%[*\n] ");
#else
scanf("%[*\n] ");
#endif

/* Read length of vector and increment. */
#ifdef _WIN32
scanf_s("%NAG_IFMT"%NAG_IFMT"%[*\n] ", &n, &incx);
#else
scanf("%NAG_IFMT"%NAG_IFMT"%[*\n] ", &n, &incx);
#endif

/* Read scalar parameter */
#ifdef _WIN32
scanf_s("%lf%[*\n] ", &alpha);
#else
scanf("%lf%[*\n] ", &alpha);
#endif

xlen = MAX(1, 1 + (n - 1)*ABS(incx));
if (n > 0)
{
 /* Allocate memory */
 if (!(x = NAG_ALLOC(xlen, double)))
 {
 printf("Allocation failure\n");
 exit_status = -1;
 goto END;
 }
}
else
{
 printf("Invalid n\n");
 exit_status = 1;
 return exit_status;
}

/* nag_dload (f16fbc). */
/* Broadcast a real scalar to a real vector. */
*nag_dload(n, alpha, x, incx, &fail);
if (fail.code != NE_NOERROR)
{
 printf("Error from nag_dload.\n%s\n", fail.message);
 exit_status = 1;
 goto END;
}

/* Print x. */
printf("Loaded vector x:\n\n");
for (i = 0; i < xlen; i = i + incx)
 printf(" x[%1"NAG_IFMT"] = %5.2f\n", i, x[i]);
10.2 Program Data

nag_dload (f16fbc) Example Program Data
4 2 : n, incx the length and increment of x
-0.3 : alpha

10.3 Program Results

nag_dload (f16fbc) Example Program Results

Loaded vector x:

x[0] = -0.30
x[2] = -0.30
x[4] = -0.30
x[6] = -0.30