NAG Library Function Document

nag_dsum (f16elc)

1 Purpose

nag_dsum (f16elc) sums the elements of a real vector.

2 Specification

#include <nag.h>
#include <nagf16.h>
double nag_dsum (Integer n, const double x[], Integer incx, NagError *fail)

3 Description

nag_dsum (f16elc) returns the sum

$$x_1 + x_2 + \cdots + x_n$$

of the elements of an \(n\)-element real vector \(x\).
If \(n = 0\) on entry, nag_dsum (f16elc) returns the value 0.

4 References

5 Arguments

1: n – Integer

 On entry: \(n\), the number of elements in \(x\).
 Constraint: \(n \geq 0\).

2: x[dim] – const double

 Note: the dimension, \(dim\), of the array \(x\) must be at least \(\max(1, 1 + (n - 1) \times |\text{incx}|)\).
 On entry: the vector \(x\). Element \(x_i\) is stored in \(x[(i - 1) \times |\text{incx}|]\), for \(i = 1, 2, \ldots, n\).

3: incx – Integer

 On entry: the increment in the subscripts of \(x\) between successive elements of \(x\).
 Constraint: \(\text{incx} \neq 0\).

4: fail – NagError *

 Input/Output
 The NAG error argument (see Section 3.6 in the Essential Introduction).
6 Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM
On entry, argument <value> had an illegal value.

NE_INT
On entry, \texttt{incx} = <value>.
Constraint: \texttt{incx} \neq 0.
On entry, \texttt{n} = <value>.
Constraint: \texttt{n} \geq 0.

NE_INTERNAL_ERROR
An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

7 Accuracy
The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see Section 2.7 of Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001)).

8 Parallelism and Performance
Not applicable.

9 Further Comments
None.

10 Example
This example computes the sum of the elements of

\[x = (1.1, 10.2, 11.5, -2.7, 9.2)^T. \]

10.1 Program Text

```c
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf16.h>

int main(void)
```

{
 /* Scalars */
 Integer exit_status, i, incx, n, xlen;
 double sumval;
 /* Arrays */
 double *x = 0;
 /* Nag Types */
 NagError fail;

 exit_status = 0;
 INIT_FAIL(fail);

 printf("nag_dsum (f16elc) Example Program Results\n\n");

 /* Skip heading in data file */
 #ifdef _WIN32
 scanf_s("%*[\n"]
 #else
 scanf("%*[\n"]
 #endif

 /* Read the number of elements and the increment */
 #ifdef _WIN32
 scanf("%"NAG_IFMT"%"NAG_IFMT "%*[\n"]", &n, &incx);
 #else
 scanf("%"NAG_IFMT"%"NAG_IFMT "%*[\n"]", &n, &incx);
 #endif
 xlen = MAX(1, 1 + (n - 1)*ABS(incx));

 if (n > 0)
 {
 /* Allocate memory */
 if (!((x = NAG_ALLOC(xlen, double)))
 { printf("Allocation failure\n");
 exit_status = -1;
 goto END;
 }
 }
 else
 {
 printf("Invalid n\n");
 exit_status = 1;
 goto END;
 }

 /* Input vector x */
 for (i = 0; i < xlen; i = i + incx)
 #ifdef _WIN32
 scanf_s("%lf", &x[i]);
 #else
 scanf("%lf", &x[i]);
 #endif
 #ifdef _WIN32
 scanf_s("%*[\n"]
 #else
 scanf("%*[\n"]
 #endif

 /* nag_dsum (f16elc). */
 * Sum elements of a vector of doubles */
 sumval = nag_dsum(n, x, incx, &fail);

 if (fail.code != NE_NOERROR)
 {
 printf("Error from nag_dsum (f16elc).\n", fail.message);
 exit_status = 1;
 goto END;
 }

 /* Print the result. */
 printf("Sum of elements of x is %9.5f\n", sumval);
}
END:
 NAG_FREE(x);
 return exit_status;
}

10.2 Program Data

nag_dsum (f16elc) Example Program Data

5 1 : n and incx
1.1 10.2 11.5 -2.7 9.2 : Array x

10.3 Program Results

nag_dsum (f16elc) Example Program Results

Sum of elements of x is 29.30000