NAG Library Function Document

nag_iload (f16dbc)

1 Purpose
nag_iload (f16dbc) broadcasts a scalar into an integer vector.

2 Specification
#include <nag.h>
#include <nagf16.h>
void nag_iload (Integer n, Integer alpha, Integer x[], Integer incx, NagError *fail)

3 Description
nag_iload (f16dbc) performs the operation
\[x \leftarrow (\alpha, \alpha, \ldots, \alpha)^T, \]
where \(x \) is an \(n \)-element integer vector and \(\alpha \) is an integer scalar.

4 References

5 Arguments
1: \(n \) – Integer
 \text{Input}
 \text{On entry:} n, the number of elements in \(x \).
 \text{Constraint:} n \geq 0.

2: \(\alpha \) – Integer
 \text{Input}
 \text{On entry:} the scalar \(\alpha \).

3: \(x[\text{dim}] \) – Integer
 \text{Output}
 \text{Note:} the dimension, \(\text{dim} \), of the array \(x \) must be at least \(\max(1, 1 + (n - 1)|\text{incx}|) \).
 \text{On exit:} the scalar \(\alpha \) is scattered with a stride of \(\text{incx} \) in \(x \). Intermediate elements of \(x \) are unchanged.

4: \(\text{incx} \) – Integer
 \text{Input}
 \text{On entry:} the increment in the subscripts of \(x \) between successive elements of \(x \).
 \text{Constraint:} \text{incx} \neq 0.

5: \(\text{fail} \) – NagError *
 \text{Input/Output}
 The NAG error argument (see Section 3.6 in the Essential Introduction).
6 Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM
On entry, argument \(\text{value} \) had an illegal value.

NE_INT
On entry, \(\text{incx} = \langle\text{value}\rangle\).
Constraint: \(\text{incx} \neq 0\).
On entry, \(\text{n} = \langle\text{value}\rangle\).
Constraint: \(\text{n} \geq 0\).

NE_INTERNAL_ERROR
An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

7 Accuracy
The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see Section 2.7 of Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001)).

8 Parallelism and Performance
Not applicable.

9 Further Comments
None.

10 Example
See Section 10 in nag_dgeqpf (f08bec) and nag_zgeqpf (f08bsc).