NAG Library Function Document

nag_real_symm_banded_sparse_eigensystem_sol (f12fgc)

Note: this function uses optional arguments to define choices in the problem specification. If you wish to use default settings for all of the optional arguments, then the option setting function nag_real_symm_sparse_eigensystem_option (f12fdc) need not be called. If, however, you wish to reset some or all of the settings please refer to Section 11 in nag_real_symm_sparse_eigensystem_option (f12fdc) for a detailed description of the specification of the optional arguments.

1 Purpose

nag_real_symm_banded_sparse_eigensystem_sol (f12fgc) is the main solver function in a suite of functions which includes nag_real_symm_sparse_eigensystem_option (f12fdc) and nag_real_symm_banded_sparse_eigensystem_init (f12ffc).

nag_real_symm_banded_sparse_eigensystem_sol (f12fgc) must be called following an initial call to nag_real_symm_banded_sparse_eigensystem_init (f12ffc) and following any calls to nag_real_symm_sparse_eigensystem_option (f12fdc).

nag_real_symm_banded_sparse_eigensystem_sol (f12fgc) returns approximations to selected eigenvalues, and (optionally) the corresponding approximate eigenvectors, and/or an orthonormal basis for the associated approximate invariant subspace. The eigenvalues (and eigenvectors) are selected from those of a standard or generalized eigenvalue problem defined by real banded symmetric matrices. The banded matrix must be stored using the LAPACK storage format for real banded nonsymmetric matrices.

2 Specification

```c
#include <nag.h>
#include <nagf12.h>
void nag_real_symm_banded_sparse_eigensystem_sol (Integer kl, Integer ku,
const double ab[], const double mb[], double sigma, Integer *nconv,
double d[], double z[], double resid[], double v[], double comm[],
Integer icomm[], NagError *fail)
```

3 Description

The suite of functions is designed to calculate some of the eigenvalues, \(\lambda \), (and optionally the corresponding eigenvectors, \(x \)) of a standard eigenvalue problem \(Ax = \lambda x \), or of a generalized eigenvalue problem \(Ax = \lambda Bx \) of order \(n \), where \(n \) is large and the coefficient matrices \(A \) and \(B \) are banded, real and symmetric.

Following a call to the initialization function nag_real_symm_banded_sparse_eigensystem_init (f12ffc), nag_real_symm_banded_sparse_eigensystem_sol (f12fgc) returns the converged approximations to eigenvalues and (optionally) the corresponding approximate eigenvectors and/or an orthonormal basis for the associated approximate invariant subspace. The eigenvalues (and eigenvectors) are selected from those of a standard or generalized eigenvalue problem defined by real banded symmetric matrices. There is negligible additional computational cost to obtain eigenvectors; an orthonormal basis is always computed, but there is an additional storage cost if both are requested.

The banded matrices \(A \) and \(B \) must be stored using the LAPACK storage format for banded nonsymmetric matrices; please refer to Section 3.3.2 in the f07 Chapter Introduction for details on this storage format.

nag_real_symm_banded_sparse_eigensystem_sol (f12fgc) is based on the banded driver functions dsbdr1 to dsbdr6 from the ARPACK package, which uses the Implicitly Restarted Lanczos iteration method. The method is described in Lehoucq and Sorensen (1996) and Lehoucq (2001) while its use within the ARPACK software is described in great detail in Lehoucq et al. (1998). This suite of functions offers the same functionality as the ARPACK banded driver software for real symmetric problems, but...
the interface design is quite different in order to make the option setting clearer and to combine the different drivers into a general purpose function.

\texttt{nag_real_symm_banded_sparse_eigensystem_sol (f12fgc)}, is a general purpose forward communication function that must be called following initialization by \texttt{nag_real_symm_banded_sparse_eigensystem_init (f12ffc)}. \texttt{nag_real_symm_banded_sparse_eigensystem_sol (f12fgc)} uses options, set either by default or explicitly by calling \texttt{nag_real_symm_sparse_eigensystem_option (f12fdc)}, to return the converged approximations to selected eigenvalues and (optionally):

- the corresponding approximate eigenvectors;
- an orthonormal basis for the associated approximate invariant subspace;
- both.

4 References

5 Arguments

1: \texttt{kl} – Integer \hspace{1cm} \textit{Input}
\hspace{1cm} \textbf{On entry}: the number of subdiagonals of the matrices \(A\) and \(B\).
\hspace{1cm} \textbf{Constraint}: \(\text{kl} \geq 0\).

2: \texttt{ku} – Integer \hspace{1cm} \textit{Input}
\hspace{1cm} \textbf{On entry}: the number of superdiagonals of the matrices \(A\) and \(B\). Since \(A\) and \(B\) are symmetric, the normal case is \(\text{ku} = \text{kl}\).
\hspace{1cm} \textbf{Constraint}: \(\text{ku} \geq 0\).

3: \texttt{ab[dim]} – const double \hspace{1cm} \textit{Input}
\hspace{1cm} \textbf{Note}: the dimension, \(\text{dim}\), of the array \texttt{ab} must be at least \(\max(1, n, x, (2 \times \text{kl} + \text{ku} + 1))\) (see \texttt{nag_real_symm_banded_sparse_eigensystem_init (f12ffc)}).
\hspace{1cm} \textbf{On entry}: the matrix \(A\) in LAPACK column-ordered banded storage format for nonsymmetric matrices (see Section 3.3.4 in the f07 Chapter Introduction).

4: \texttt{mb[dim]} – const double \hspace{1cm} \textit{Input}
\hspace{1cm} \textbf{Note}: the dimension, \(\text{dim}\), of the array \texttt{mb} must be at least \(\max(1, n, x, (2 \times \text{kl} + \text{ku} + 1))\) (see \texttt{nag_real_symm_banded_sparse_eigensystem_init (f12ffc)}).
\hspace{1cm} \textbf{On entry}: the matrix \(B\) in LAPACK column-ordered banded storage format for nonsymmetric matrices (see Section 3.3.4 in the f07 Chapter Introduction).

5: \texttt{sigma} – double \hspace{1cm} \textit{Input}
\hspace{1cm} \textbf{On entry}: if one of the Shifted Inverse (see \texttt{nag_real_symm_sparse_eigensystem_option (f12fdc)}) modes has been selected then \texttt{sigma} contains the real shift used; otherwise \texttt{sigma} is not referenced.
6: \textbf{nconv} – Integer *
 \textit{Output}
 \textit{On exit:} the number of converged eigenvalues.

7: \textbf{d}[\textit{dim}] – double
 \textit{Output}
 \textbf{Note:} the dimension, \textit{dim}, of the array \textbf{d} must be at least \textbf{ncv} \textit{(see nag_real_symm_banded_sparse_eigensystem_init (f12ffc)).}
 \textit{On exit:} the first \textbf{nconv} locations of the array \textbf{d} contain the converged approximate eigenvalues.

8: \textbf{z}[n \times (\textbf{nev} + 1)] – double
 \textit{Output}
 \textit{On exit:} if the default option \textbf{Vectors} = RITZ (see nag_real_symm_sparse_eigensystem_option (f12fde)) has been selected then \textbf{z} contains the final set of eigenvectors corresponding to the eigenvalues held in \textbf{d}. The real eigenvector associated with eigenvalue \(i - 1\), for \(i = 1, 2, \ldots, \textbf{nconv}\), is stored at locations \textbf{z}[i - 1 \times n + j - 1], for \(j = 1, 2, \ldots, n\).

9: \textbf{resid}[\textit{dim}] – double
 \textit{Input/Output}
 \textbf{Note:} the dimension, \textit{dim}, of the array \textbf{resid} must be at least \textbf{n} \textit{(see nag_real_symm_banded_sparse_eigensystem_init (f12ffc)).}
 \textit{On entry:} need not be set unless the option \textbf{Initial Residual} has been set in a prior call to nag_real_symm_sparse_eigensystem_option (f12fdc) in which case \textbf{resid} must contain an initial residual vector.
 \textit{On exit:} contains the final residual vector.

10: \textbf{v}[\textit{dim}] – double
 \textit{Output}
 \textbf{Note:} the dimension, \textit{dim}, of the array \textbf{v} must be at least \textbf{n} \times \textbf{ncv} \textit{(see nag_real_symm_banded_sparse_eigensystem_init (f12ffc)).}
 \textit{On exit:} if the option \textbf{Vectors} (see nag_real_symm_sparse_eigensystem_option (f12fde)) has been set to Schur or Ritz and \textbf{z} does not equal \textbf{v} then the first \textbf{nconv} sections of \textbf{v}, of length \textbf{n}, will contain approximate Schur vectors that span the desired invariant subspace.
 The \textit{jth} Schur vector is stored in locations \textbf{v}[n \times (j - 1) + i - 1], for \(j = 1, 2, \ldots, \textbf{nconv}\) and \(i = 1, 2, \ldots, n\).

11: \textbf{comm}[\textit{dim}] – double
 \textit{Communication Array}
 \textbf{Note:} the dimension, \textit{dim}, of the array \textbf{comm} must be at least \textbf{max}(1, licomm) \textit{(see nag_real_symm_banded_sparse_eigensystem_init (f12ffc)).}
 \textit{On initial entry:} must remain unchanged from the prior call to nag_real_symm_sparse_eigensystem_option (f12fdc) and nag_real_symm_banded_sparse_eigensystem_init (f12ffc).
 \textit{On exit:} contains no useful information.

12: \textbf{icomm}[\textit{dim}] – Integer
 \textit{Communication Array}
 \textbf{Note:} the dimension, \textit{dim}, of the array \textbf{icomm} must be at least \textbf{max}(1, licomm) \textit{(see nag_real_symm_banded_sparse_eigensystem_init (f12ffc)).}
 \textit{On initial entry:} must remain unchanged from the prior call to nag_real_symm_sparse_eigensystem_iter (f12fbc) and nag_real_symm_sparse_eigensystem_option (f12fdc).
 \textit{On exit:} contains no useful information.

13: \textbf{fail} – NagError *
 \textit{Input/Output}
 The NAG error argument (see Section 3.6 in the Essential Introduction).
6 Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM
On entry, argument \(\langle \text{value} \rangle \) had an illegal value.

NE_BOTH_ENDS_1
Eigenvalues from both ends of the spectrum were requested, but the number of eigenvalues (\(\text{nev} \) in nag_real_symm_banded_sparse_eigensystem_init (f12ffc)) requested is one.

NE_INT
On entry, \(\text{kl} = \langle \text{value} \rangle \).
Constraint: \(\text{kl} \geq 0 \).
On entry, \(\text{ku} = \langle \text{value} \rangle \).
Constraint: \(\text{ku} \geq 0 \).
The maximum number of iterations \(\leq 0 \), the option Iteration Limit has been set to \(\langle \text{value} \rangle \).

NE_INT_2
The maximum number of iterations has been reached. The maximum number of iterations \(= \langle \text{value} \rangle \). The number of converged eigenvalues \(= \langle \text{value} \rangle \).

NE_INTERNAL_EIGVAL_FAIL
Error in internal call to compute eigenvalues and corresponding error bounds of the current upper Hessenberg matrix. Please contact NAG.

NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

NE_INVALID_OPTION
On entry, Vectors = Select, but this is not yet implemented.

NE_MAX_ITER
During calculation of a tridiagonal form, there was a failure to compute \(\langle \text{value} \rangle \) eigenvalues in a total of \(\langle \text{value} \rangle \) iterations.

NE_NO_LANCZOS_FAC
Could not build a Lanczos factorization. The size of the current Lanczos factorization \(= \langle \text{value} \rangle \).

NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

NE_NO_SHIFTS_APPLIED
No shifts could be applied during a cycle of the implicitly restarted Lanczos iteration.
The options Generalized and Regular are incompatible.

Failure during internal factorization of banded matrix. Please contact NAG.

Failure during internal solution of banded system. Please contact NAG.

The number of eigenvalues found to sufficient accuracy is zero.

The option Initial Residual was selected but the starting vector held in resid is zero.

The relative accuracy of a Ritz value, \(\lambda \), is considered acceptable if its Ritz estimate is \(\leq \) Tolerance \(\times |\lambda| \). The default Tolerance used is the machine precision given by nag_machine_precision (X02AJC).

nag_real_symm_banded_sparse_eigensystem_sol (f12fgc) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.

nag_real_symm_banded_sparse_eigensystem_sol (f12fgc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users’ Note for your implementation for any additional implementation-specific information.

None.

This example solves \(Ax = \lambda x \) in regular mode, where \(A \) is obtained from the standard central difference discretization of the two-dimensional convection-diffusion operator \(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \mu \frac{\partial u}{\partial x} \) on the unit square with zero Dirichlet boundary conditions. \(A \) is stored in LAPACK banded storage format.

#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <stdio.h>
#include <nagf12.h>
#include <nagf16.h>
int main(void) {
/* Constants */
 Integer licomm = 140;
/* Scalars */
 double alpha, h2, resr, sigma = 0.0;
 Integer exit_status, i, j, k, kl, ku, ksub, ksup, lcomm;
 Integer ldab, n, nconv, ncv, nev, nx;
/* Nag types */
 NagError fail;
/* Arrays */
 double *ab = 0, *ax = 0, *comm = 0, *eigv = 0, *eigest = 0, *mb = 0;
 double *resid = 0, *v = 0;
 Integer *icomm = 0;
 exit_status = 0;
 INIT_FAIL(fail);
 printf("nag_real_symm_banded_sparse_eigensystem_sol (f12fgc)"
 " Example Program Results\n\n");
#ifdef _WIN32
 scanf_s("%*[\n\n]");
#else
 scanf("%*[\n\n]");
#endif
#ifdef _WIN32
 scanf("%"NAG_IFMT"%"NAG_IFMT"%"NAG_IFMT"%*[\n\n]", &nx, &nev, &ncv);
#else
 scanf("%"NAG_IFMT"%"NAG_IFMT"%"NAG_IFMT"%*[\n\n]", &nx, &nev, &ncv);
#endif
 n = nx * nx;
 kl = nx;
 ku = nx;
 ldab = 2*kl + ku + 1;
 lcomm = 3*n + ncv*ncv + 8*ncv + 60;
/* Allocate memory */
#iffail(code != NE_NOERROR)
 printf("Error from nag_real_symm_banded_sparse_eigensystem_init"
 " (f12ffc).\n\n", fail.message);
 exit_status = 1;
 goto END;
#endif
 /* Initialise communication arrays for problem using
 nag_real_symm_banded_sparse_eigensystem_init (f12ffc). */
 nag_real_symm_banded_sparse_eigensystem_init(n, nev, ncv, icomm, licomm,
 comm, lcomm, &fail);
 if (fail.code != NE_NOERROR)
 {
 printf("Error from nag_real_symm_banded_sparse_eigensystem_init"
 " (f12ffc).\n\n", fail.message);
 exit_status = 1;
 goto END;
 }
/* Construct the matrix A in banded form and store in AB */
/* ku, kl are number of superdiagonals and subdiagonals within the
 band of matrices A and M. */
for (j = 0; j < n*ldab; ++j)
ab[j] = 0.0;
} /* Main diagonal of A. */
h2 = 1.0 / ((nx + 1) * (nx + 1));
k = kl + ku;
for (j = 0; j < n; ++j)
{
 ab[k] = 4.0 / h2;
k = k + ldab;
} /* First subdiagonal and superdiagonal of A. */
ksup = kl + ku - 1;
ksub = kl + ku + 1;
for (i = 0; i < nx-1; ++i)
{
ksub = ksub + ldab;
 for (j = 0; j < nx-1; ++j)
 {
 ab[ksup] = -1.0 / h2;
 ab[ksub] = -1.0 / h2;
 ksup = ksup + ldab;
 ksub = ksub + ldab;
 }
ksub = ksub + ldab;
} /* kl-th subdiagonal and ku-th super-diagonal. */
ksup = kl + nx*ldab;
ksub = 2*kl + ku;
for (i = 0; i < nx-1; ++i)
{
 for (j = 0; j < nx; ++j)
 {
 ab[ksup] = -1.0 / h2;
 ab[ksub] = -1.0 / h2;
 ksup = ksup + ldab;
 ksub = ksub + ldab;
 }
}
/* Find eigenvalues of largest magnitude and the corresponding *
 eigenvectors using nag_real_symm_banded_sparse_eigensystem_sol (f12fgc).
 */

nag_real_symm_banded_sparse_eigensystem_sol(kl, ku, ab, mb, sigma, &nconv,
eigv, v, resid, v, comm, icomm, &fail);
if (fail.code == NE_NOERROR)
{
 /* Compute the residual norm ||A*x - lambda*x||. */
k = 0;
 for (j = 0; j <= nconv-1; ++j)
 {
 /* ax <- AV_k, where V_k is kth Ritz vector. */
/* Compute matrix-vector multiply using nag_dgbmv (f16pbc). */
 nag_dgbmv(Nag_ColMajor, Nag_NoTrans, n, n, kl, ku, 1.0, &ab[kl],
 ldab, &v[k], 1, 0.0, ax, 1, &fail);
/* ax <- ax - (lambda_j) * V_k. */
alpha = -eigv[j];
/* Compute vector update using nag_daxpby (f16ecc). */
 nag_daxpby(n, alpha, &v[k], 1, 1.0, ax, 1, &fail);
/* Compute 2-norm of Ritz estimates using nag_dge_norm (f16rac).*/
 nag_dge_norm(Nag_ColMajor, Nag_FrobeniusNorm, n, 1, ax, n, &resr,
 &fail);
/* Scale. */
eigest[j] = resr / fabs(eigv[j]);
k = k + n;
}

/* Print computed eigenvalues. */
printf("\n The %4"NAG_IFMT" Ritz values are:\n\n", nconv);
 for (j = 0; j <= nconv-1; ++j)
{ if (eigest[j] <= 1.0e-10)
 { printf("%8"NAG_IFMT"%5s%7.4f\n", j+1, "", eigv[j]);
 }
 else
 {
 printf("%8"NAG_IFMT"%5s%7.4f%5s%18.16f\n", j+1, "", eigv[j],
 " *** ", eigest[j]);
 }
} else
{ printf(" Error from
 "nag_real_symm_banded_sparse_eigensystem_sol (f12fgc).\n%s\n",
 fail.message);
 exit_status = 1;
 goto END;
}

END:
NAG_FREE(ab);
NAG_FREE(ax);
NAG_FREE(comm);
NAG_FREE(eigv);
NAG_FREE(eigest);
NAG_FREE(mb);
NAG_FREE(resid);
NAG_FREE(v);
NAG_FREE(icom);

 return exit_status;
}

10.2 Program Data

nag_real_symm_banded_sparse_eigensystem_sol (f12fgc) Example Program Data
10 4 10 : Values for nx, nev and ncv

10.3 Program Results

nag_real_symm_banded_sparse_eigensystem_sol (f12fgc) Example Program Results

The 4 Ritz values are:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>891.1667</td>
</tr>
<tr>
<td>2</td>
<td>919.7807</td>
</tr>
<tr>
<td>3</td>
<td>919.7807</td>
</tr>
<tr>
<td>4</td>
<td>948.3946</td>
</tr>
</tbody>
</table>