1 Purpose

nag_complex_banded_eigensystem_init (f12atc) is a setup function for nag_complex_banded_eigensystem_solve (f12auc) which may be used for finding some eigenvalues (and optionally the corresponding eigenvectors) of a standard or generalized eigenvalue problem defined by complex, banded, non-Hermitian matrices. The banded matrix must be stored using the LAPACK column ordered storage format for complex banded non-Hermitian matrices (see Section 3.3.4 in the f07 Chapter Introduction).

2 Specification

```
#include <nag.h>
#include <nagf12.h>

void nag_complex_banded_eigensystem_init (Integer n, Integer nev, 
    Integer ncv, Integer icomm[], Integer licomm, Complex comm[],
    Integer lcomm, NagError *fail)
```

3 Description

The pair of functions nag_complex_banded_eigensystem_init (f12atc) and nag_complex_banded_eigensystem_solve (f12auc) together with the option setting function nag_complex_sparse_eigensystem_option (f12arc) are designed to calculate some of the eigenvalues, \(\lambda \), and optionally the corresponding eigenvectors, \(x \), of a standard eigenvalue problem \(Ax = \lambda x \), or of a generalized eigenvalue problem \(Ax = \lambda Bx \) of order \(n \), where \(n \) is large and the coefficient matrices \(A \) and \(B \) are banded complex and non-Hermitian.

nag_complex_banded_eigensystem_init (f12atc) is a setup function which must be called before the option setting function nag_complex_sparse_eigensystem_option (f12arc) and the solver function nag_complex_banded_eigensystem_solve (f12auc). Internally, nag_complex_banded_eigensystem_solve (f12auc) makes calls to nag_complex_sparse_eigensystem_iter (f12apc) and nag_complex_sparse_eigensystem_sol (f12aqc); the function documents for nag_complex_sparse_eigensystem_iter (f12apc) and nag_complex_sparse_eigensystem_sol (f12aqc) should be consulted for details of the algorithm used.

This setup function initializes the communication arrays, sets (to their default values) all options that can be set by you via the option setting function nag_complex_sparse_eigensystem_option (f12arc), and checks that the lengths of the communication arrays as passed by you are of sufficient length. For details of the options available and how to set them, see Section 11.1 in nag_complex_sparse_eigensystem_option (f12arc).

4 References

5 Arguments

1: \(n \) – Integer \(\text{Input} \)
On entry: the order of the matrix \(A \) (and the order of the matrix \(B \) for the generalized problem) that defines the eigenvalue problem.
Constraint: \(n > 0 \).

2: \(\text{nev} \) – Integer \(\text{Input} \)
On entry: the number of eigenvalues to be computed.
Constraint: \(0 < \text{nev} < n - 1 \).

3: \(\text{ncv} \) – Integer \(\text{Input} \)
On entry: the number of Lanczos basis vectors to use during the computation.
At present there is no a priori analysis to guide the selection of \(\text{ncv} \) relative to \(\text{nev} \). However, it is recommended that \(\text{ncv} \geq 2 \times \text{nev} + 1 \). If many problems of the same type are to be solved, you should experiment with increasing \(\text{ncv} \) while keeping \(\text{nev} \) fixed for a given test problem. This will usually decrease the required number of matrix-vector operations but it also increases the work and storage required to maintain the orthogonal basis vectors. The optimal ‘cross-over’ with respect to CPU time is problem dependent and must be determined empirically.
Constraint: \(\text{nev} + 1 < \text{ncv} \leq n \).

4: \(\text{icomm}[\max(1, \text{licomm})] \) – Integer \(\text{Communication Array} \)
On exit: contains data to be communicated to nag_complex_banded_eigensystem_solve (f12auc).

5: \(\text{licomm} \) – Integer \(\text{Input} \)
On entry: the dimension of the array \(\text{icomm} \).
If \(\text{licomm} = -1 \), a workspace query is assumed and the function only calculates the required dimensions of \(\text{icomm} \) and \(\text{comm} \), which it returns in \(\text{icomm}[0] \) and \(\text{comm}[0] \) respectively.
Constraint: \(\text{licomm} \geq 140 \) or \(\text{licomm} = -1 \).

6: \(\text{comm}[\max(1, \text{lcomm})] \) – Complex \(\text{Communication Array} \)
On exit: contains data to be communicated to nag_complex_banded_eigensystem_solve (f12auc).

7: \(\text{lcomm} \) – Integer \(\text{Input} \)
On entry: the dimension of the array \(\text{comm} \).
If \(\text{lcomm} = -1 \), a workspace query is assumed and the function only calculates the dimensions of \(\text{icomm} \) and \(\text{comm} \) required by nag_complex_banded_eigensystem_solve (f12auc), which it returns in \(\text{icomm}[0] \) and \(\text{comm}[0] \) respectively.
Constraint: \(\text{lcomm} \geq 60 \) or \(\text{lcomm} = -1 \).

8: \(\text{fail} \) – NagError * \(\text{Input/Output} \)
The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.
NE_BAD_PARAM
On entry, argument \texttt{value} had an illegal value.

NE_INT
On entry, \texttt{n} = \texttt{value}.
Constraint: \texttt{n} > 0.

On entry, \texttt{nev} = \texttt{value}.
Constraint: \texttt{nev} > 0.

The length of the complex array \texttt{comm} is too small \texttt{lcomm} = \texttt{value}, but must be at least \texttt{value}.

The length of the integer array \texttt{icomm} is too small \texttt{licomm} = \texttt{value}, but must be at least \texttt{value}.

NE_INT_3
On entry, \texttt{nev} = \texttt{value}, \texttt{nev} = \texttt{value} and \texttt{n} = \texttt{value}.
Constraint: \texttt{nev} > \texttt{nev} + 1 and \texttt{nev} \leq \texttt{n}.

NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

7 Accuracy
Not applicable.

8 Parallelism and Performance
Not applicable.

9 Further Comments
None.

10 Example
The use of nag_complex_banded_eigensystem_init (f12atc) is illustrated in Section 10 in nag_complex_banded_eigensystem_solve (f12auc).