NAG Library Function Document

nag_complex_sparse_eigensystem_option (f12arc)

Note: this function uses optional arguments to define choices in the problem specification. If you wish to use default settings for all of the optional arguments, then this function need not be called. If, however, you wish to reset some or all of the settings please refer to Section 11 for a detailed description of the specification of the optional arguments.

1 **Purpose**

`nag_complex_sparse_eigensystem_option (f12arc)` is an option setting function in a suite of functions consisting of `nag_complex_sparse_eigensystem_init (f12anc)`, `nag_complex_sparse_eigensystem_iter (f12apc)`, `nag_complex_sparse_eigensystem_sol (f12aqc)`, `nag_complex_sparse_eigensystem_option (f12arc)` and `nag_complex_sparse_eigensystem_monit (f12asc)`, for which it may be used to supply individual optional arguments to `nag_complex_sparse_eigensystem_iter (f12apc)` and `nag_complex_sparse_eigensystem_sol (f12aqc)`. `nag_complex_sparse_eigensystem_option (f12arc)` is also an option setting function in a suite of functions consisting of `nag_complex_sparse_eigensystem_init (f12anc)`, `nag_complex_banded_eigensystem_init (f12atc)` and `nag_complex_banded_eigensystem_solve (f12auc)` for which it may be used to supply individual optional arguments to `nag_complex_banded_eigensystem_solve (f12auc)`.

The initialization function for the appropriate suite, `nag_complex_sparse_eigensystem_init (f12anc)` or `nag_complex_banded_eigensystem_init (f12atc)`, must have been called prior to calling `nag_complex_sparse_eigensystem_option (f12arc)`.

2 **Specification**

```c
#include <nag.h>
#include <nagf12.h>
void nag_complex_sparse_eigensystem_option (const char *str,
                                          Integer icomm[], Complex comm[], NagError *fail)
```

3 **Description**

`nag_complex_sparse_eigensystem_option (f12arc)` may be used to supply values for optional arguments to `nag_complex_sparse_eigensystem_iter (f12apc)` and `nag_complex_sparse_eigensystem_sol (f12aqc)`, or to `nag_complex_banded_eigensystem_solve (f12auc)`. It is only necessary to call `nag_complex_sparse_eigensystem_option (f12arc)` for those arguments whose values are to be different from their default values. One call to `nag_complex_sparse_eigensystem_option (f12arc)` sets one argument value.

Each optional argument is defined by a single character string consisting of one or more items. The items associated with a given option must be separated by spaces, or equals signs `=`. Alphabetic characters may be upper or lower case. The string

`'Iteration Limit = 500'`

is an example of a string used to set an optional argument. For each option the string contains one or more of the following items:

- a mandatory keyword;
- a phrase that qualifies the keyword;
- a number that specifies an Integer or double value. Such numbers may be up to 16 contiguous characters in C’s `d` or `g` format.

`nag_complex_sparse_eigensystem_option (f12arc)` does not have an equivalent function from the ARPACK package which passes options by directly setting values to scalar arguments or to specific
elements of array arguments. nag_complex_sparse_eigensystem_option (f12arc) is intended to make the
passing of options more transparent and follows the same principle as the single option setting functions
in Chapter e04 (see nag_opt_sparse_convex_qp_option_set_string (e04nsc) for an example).

The setup function nag_complex_sparse_eigensystem_init (f12anc) must be called prior to the first call
to nag_complex_sparse_eigensystem_option (f12arc) or nag_complex_banded_eigensystem_init (f12atc),
and all calls to nag_complex_sparse_eigensystem_option (f12arc) must precede the first call to
nag_complex_sparse_eigensystem_iter (f12apc) or nag_complex_banded_eigensystem_solve (f12auc).

A complete list of optional arguments, their abbreviations, synonyms and default values is given in
Section 11.

4 References

Analysis and Applications 23 551–562

nonsymmetric matrices Preprint MCS-P547-1195 Argonne National Laboratory

Lehoucq R B and Sorensen D C (1996) Deflation techniques for an implicitly restarted Arnoldi iteration
SIAM Journal on Matrix Analysis and Applications 17 789–821

Eigenvalue Problems with Implicitly Restarted Arnoldi Methods SIAM, Philadelphia

5 Arguments

1: str – const char *
 On entry: a single valid option string (as described in Section 3 and Section 11).

2: icomm[dim] – Integer
 Communication Array
 Note: the dimension, dim, of the array icomm must be at least max(1,licomm) (see
 nag_complex_sparse_eigensystem_init (f12anc)).
 On initial entry: must remain unchanged following a call to the setup function
 nag_complex_sparse_eigensystem_init (f12anc).
 On exit: contains data on the current options set.

3: comm[dim] – Complex
 Communication Array
 Note: the dimension, dim, of the array comm must be at least max(1,lcomm) (see
 nag_complex_sparse_eigensystem_init (f12anc)).
 On initial entry: must remain unchanged following a call to the setup function
 nag_complex_sparse_eigensystem_init (f12anc).
 On exit: contains data on the current options set.

4: fail – NagError *
 Input/Output
 The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.
NE_BAD_PARAM
On entry, argument \textit{value} had an illegal value.

NE_INITIALIZATION
Either the initialization function has not been called prior to the call of this function or a
communication array has become corrupted.

NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.
An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

NE_INVALID_OPTION
Ambiguous keyword: \textit{value}
Keyword not recognized: \textit{value}
Second keyword not recognized: \textit{value}

NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

7 Accuracy
Not applicable.

8 Parallelism and Performance
Not applicable.

9 Further Comments
None.

10 Example
This example solves $Ax = \lambda Bx$ in shifted-inverse mode, where A and B are derived from the finite
element discretization of the one-dimensional convection-diffusion operator
$rac{d^2u}{dx^2} + \rho \frac{du}{dx}$ on the interval
$[0, 1]$, with zero Dirichlet boundary conditions.

10.1 Program Text
/* nag_complex_sparse_eigensystem_option (f12arc) Example Program.
 * Copyright 2014 Numerical Algorithms Group.
 * Mark 8, 2005.
 */
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nag_string.h>
#include <stdio.h>
#include <naga02.h>
#include <nagf12.h>
#include <nagf16.h>

/* Table of constant values */
static Complex four = { 4., 0. };

static void mv(Integer, Complex *, Complex *);
static void my_zgttrf(Integer, Complex *, Complex *, Complex *, Complex *, Integer *, Integer *);
static void my_zgttrs(Integer, Complex *, Complex *, Complex *, Complex *, Integer *, Complex *);

int main(void)
{
 /* Constants */
 Integer licomm = 140, imon = 0;

 /* Scalars */
 Complex rho, sl, s2, s3, sigma;
 double estnrm, hr, hr1, sr, shs;
 Integer exit_status, info, irevcm, j, lcomm, n, nconv, ncv;
 Integer nev, niter, nshift, nx;
 /* Nag types */
 NagError fail;

 /* Arrays */
 Complex *comm = 0, *eigv = 0, *eigest = 0, *dd = 0, *dl = 0, *du = 0;
 Complex *du2 = 0, *resid = 0, *v = 0;
 Integer *icomm = 0, *ipiv = 0;
 /* Ponters */
 Complex *mx = 0, *x = 0, *y = 0;
 exit_status = 0;
 INIT_FAIL(fail);

 printf("nag_complex_sparse_eigensystem_option (f12arc) Example "
 "Program Results\n");
 /* Skip heading in data file */
 #ifdef _WIN32
 scanf_s("%\[^
\] ", &nx, &nev, &ncv);
 #else
 scanf("%\[^
\] ", &nx, &nev, &ncv);
 #endif

 n = nx * nx;
 lcomm = 3*n + 3*ncv*ncv + 5*ncv + 60;
 /* Allocate memory */
 if (!comm ||
 !eigv ||
 !eigest ||
 !dd ||
 !dl ||
 !du ||
 !du2 ||
 !resid ||
 !v ||
 !icomm ||
 !ipiv)
 { printf("Allocation failure\n");
 exit_status = -1;
 goto END;
 }

 /* Initialise communication arrays for problem using
 nag_complex_sparse_eigensystem_init (f12anc). */
 if (fail.code != NE_NOERROR)
 { printf("nag_complex_sparse_eigensystem_option (f12arc) Example "
 "Error - please check the NAG info file\n");
 exit_status = -1;
 goto END;
 }

 /* Solve problem using nag_complex_sparse_eigensystem_option (f12arc). */
 if (fail.code != NE_NOERROR)
 { printf("nag_complex_sparse_eigensystem_option (f12arc) Example "
 "Error - please check the NAG info file\n");
 exit_status = -1;
 goto END;
 }

 END:
 return (exit_status);
}
printf("Error from nag_complex_sparse_eigensystem_init (f12anc).\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Select the required mode using
nag_complex_sparse_eigensystem_option (f12arc). */
/* nag_complex_sparse_eigensystem_option("SHIFTED INVERSE", icomm,
comm, &fail);*/
/* Select the problem type using
nag_complex_sparse_eigensystem_option (f12arc). */
/* nag_complex_sparse_eigensystem_option("GENERALIZED", icomm,
comm, &fail);*/

/* Set values for sigma and rho */
/* Assign to Complex type using nag_complex (a02bac) */
sigma = nag_complex(500.0, 0.0);
rho = nag_complex(10.0, 0.0);
hr1 = (double)(n+1); /* one/h */
hr = 1.0/hr1; /* h */
sr = 0.5*rho.re; /* s */
shs = sigma.re*hr/6.0; /* sigma*h/6 */
/* Assign to Complex type using nag_complex (a02bac) */
s1 = nag_complex(-hr1-sr-shs, 0.0); /* -one/h - s -sigma*h/six */
s3 = nag_complex(-hr1+sr-shs, 0.0); /* -one/h + s -sigma*h/six */
s2 = nag_complex(2.0*hr1-4.0*shs, 0.0); /* two/h - four*sigma*h/six */
for (j = 0; j <= n - 2; ++j)
{
 dl[j] = s1;
 dd[j] = s2;
 du[j] = s3;
}
 dd[n-1] = s2;
my_zgttrf(n, dl, dd, du, du2, ipiv, &info);
irevcm = 0;
REVCOMLOOP:
/* repeated calls to reverse communication routine
nag_complex_sparse_eigensystem_iter (f12apc). */
/* nag_complex_sparse_eigensystem_iter(&irevcm, resid, v, &x, &y, &mx,
&nshift, comm, icomm, &fail); */
if (irevcm != 5)
{
 if (irevcm == -1)
 {
 /* Perform x <--- OP*x = inv[A-SIGMA*M]*M*x */
 mv(nx, x, y);
 my_zgttrs(n, dl, dd, du, du2, ipiv, y);
 }
 else if (irevcm == 1)
 {
 /* Perform x <--- OP*x = inv[A-SIGMA*M]*M*x, */
 /* MX stored in mx */
 for (j = 0; j < n; ++j)
 {
 y[j] = mx[j];
 my_zgttrs(n, dl, dd, du, du2, ipiv, y);
 }
 }
 else if (irevcm == 2)
 {
 /* Perform y <--- M*x */
 mv(nx, x, y);
 }
 else if (irevcm == 4 && imon == 1)
 {
 /* If imon=1, get monitoring information using
nag_complex_sparse_eigensystem_monit (f12asc). */
 /* nag_complex_sparse_eigensystem_monit(niter, &nconv, eigv,
/* Compute 2-norm of Ritz estimates using nag_zge_norm (f16uac). */
nag_zge_norm(Nag_ColMajor, Nag_FrobeniusNorm, nev, 1, eigest, nev, &estnrm, &fail);
printf("Iteration %3"NAG_IFMT", niter);
printf(" No. converged = %3"NAG_IFMT", nconv);
printf(" norm of estimates = %17.8e \n", estnrm);
}
goto REVCOMLOOP;
}
if (fail.code == NE_NOERROR)
{
/* Post-Process using nag_complex_sparse_eigensystem_sol (f12aqc) to compute eigenvalues/vectors. */
nag_complex_sparse_eigensystem_sol(&nconv, eigv, v, sigma, resid, v, comm, icomm, &fail);
printf("\n The %4"NAG_IFMT" generalized Ritz values closest to "
"(%7.3f , %7.3f) are: \n\n", nconv, sigma.re, sigma.im);
for (j = 0; j <= nconv-1; ++j)
{
printf("%8"NAG_IFMT"%5s(%12.4f , %12.4f)\n", j+1, "",
eigv[j].re, eigv[j].im);
}
}
else
{
printf(" Error from nag_complex_sparse_eigensystem_iter (f12apc)."
"\n%\n", fail.message);
exit_status = 1;
goto END;
}
END:
NAG_FREE(comm);
NAG_FREE(eigv);
NAG_FREE(eigest);
NAG_FREE(dd);
NAG_FREE(dl);
NAG_FREE(du);
NAG_FREE(du2);
NAG_FREE(resid);
NAG_FREE(v);
NAG_FREE(icomm);
NAG_FREE(ipiv);
return exit_status;
}

static void mv(Integer nx, Complex *v, Complex *y)
{
/* Compute the out-of--place matrix vector multiplication Y<---M*X, */
/* where M is mass matrix formed by using piecewise linear elements */
/* on [0,1]. */
/* Scalars */
Complex hsix, z1;
Integer j, n;
/* Function Body */
n = nx * nx;
/* Assign to Complex type using nag_complex (a02bac) */
hsix = nag_complex(1.0/(6.0*(double)(n+1)), 0.0);
/* y[0] = (four*v[0]+v[1])*(h/six) */
/* Compute Complex multiply using nag_complex_multiply (a02ccc). */
z1 = nag_complex_multiply(four, v[0]);
/* Compute Complex addition using nag_complex_add (a02cac). */
z1 = nag_complex_add(z1, v[1]);
y[0] = nag_complex_multiply(z1, hsix);
for (j = 1; j <= n - 2; ++j)
{
/* y[j] = (v[j-1] + four*v[j] + V[j+1])*(h/six) */
```c
/* Compute Complex multiply using nag_complex_multiply (a02ccc). */
z1 = nag_complex_multiply(four, v[j]);
/* Compute Complex addition using nag_complex_add (a02cac). */
z1 = nag_complex_add(v[j-1], z1);
z1 = nag_complex_add(z1, v[j+1]);
y[j] = nag_complex_multiply(z1, hsix);
}
/* y[n-1] = (v[n-2] + four*v[n-1])*(h/six) */
/* Compute Complex multiply using nag_complex_multiply (a02ccc). */
z1 = nag_complex_multiply(four, v[n-1]);
/* Compute Complex addition using nag_complex_add (a02cac). */
z1 = nag_complex_add(v[n-2], z1);
y[n-1] = nag_complex_multiply(z1, hsix);
return;

}/ * m v */
static void my_zgttrf(Integer n, Complex dl[], Complex d[],
Complex du[], Complex du2[], Integer ipiv[],
Integer *info)
{
/* A simple C version of the Lapack routine zgttrf with argument
checking removed */
/* Scalars */
Complex temp, fact, z1;
Integer i;
/* Function Body */
*info = 0;
for (i = 0; i < n; ++i)
{
ipiv[i] = i;
}
for (i = 0; i < n - 2; ++i)
{
du2[i] = nag_complex(0.0, 0.0);
}
for (i = 0; i < n - 2; ++i)
{
if (fabs(d[i].re)+fabs(d[i].im) >= fabs(dl[i].re)+fabs(dl[i].im))
{
/* No row interchange required, eliminate dl[i]. */
if (fabs(d[i].re)+fabs(d[i].im) != 0.0)
{
/* Compute Complex division using nag_complex Divide
(a02cdd). */
fact = nag_complex_divide(d[i], d[i]);
dl[i] = fact;
/* Compute Complex multiply using nag_complex Multiply
(a02ccc). */
fact = nag_complex_multiply(fact, du[i]);
/* Compute Complex subtraction using
nag_complex_Subtract (a02cbc). */
d[i+1] = nag_complex_subtract(d[i+1], fact);
}
else
{
/* Interchange rows I and I+1, eliminate dl[I]. */
/* Compute Complex division using nag_complex Divide
(a02cdd). */
fact = nag_complex_divide(d[i], dl[i]);
d[i] = dl[i];
dl[i] = fact;
temp = du[i];
du[i] = d[i+1];
/* Compute Complex multiply using nag_complex Multiply
(a02ccc). */
z1 = nag_complex_multiply(fact, d[i+1]);
/* Compute Complex subtraction using nag_complex Subtract
(a02cbc). */
d[i+1] = nag_complex_subtract(temp, z1);
}
```

du2[i] = du[i+1];
/* Compute Complex multiply using nag_complex_multiply (a02ccc). */
du[i+1] = nag_complex_multiply(fact, du[i+1]);
/* Perform Complex negation using nag_complex_negate (a02cec). */
du[i+1] = nag_complex_negate(du[i+1]);
ipiv[i] = i + 1;
}
}
if (n > 1)
{
i = n - 2;
if (fabs(d[i].re)+fabs(d[i].im) >= fabs(dl[i].re)+fabs(dl[i].im))
{
if (fabs(d[i].re)+fabs(d[i].im) != 0.0)
{
/* Compute Complex division using nag_complex_divide (a02cdc). */
fact = nag_complex_divide(dl[i], d[i]);
d[i] = fact;
/* Compute Complex multiply using nag_complex_multiply (a02ccw). */
fact = nag_complex_multiply(fact, du[i]);
/* Compute Complex subtraction using nag_complex_subtract (a02cbw). */
d[i+1] = nag_complex_subtract(d[i+1], fact);
}
else
{
/* Compute Complex division using nag_complex_divide (a02ccw). */
fact = nag_complex_divide(d[i], dl[i]);
d[i] = dl[i];
dl[i] = fact;
temp = du[i];
d[i] = d[i+1];
/* Compute Complex multiply using nag_complex_multiply (a02ccw). */
z1 = nag_complex_multiply(fact, d[i+1]);
/* Compute Complex subtraction using nag_complex_subtract (a02cbw). */
d[i+1] = nag_complex_subtract(temp, z1);
ipiv[i] = i + 1;
}
} /* Check for a zero on the diagonal of U. */
for (i = 0; i < n; ++i)
{
if (fabs(d[i].re)+fabs(d[i].im) == 0.0)
{
*info = i;
goto END;
}
}
END:
return;
}
static void my_zgttrs(Integer n, Complex dl[], Complex d[],
Complex du[], Complex du2[], Complex b[])
{
/* A simple C version of the Lapack routine zgttrs with argument
 checking removed, the number of right-hand-sides=1, Trans='N' */
/* Scalars */
Complex temp, z1;
Integer i;
/* Solve L*x = b. */
for (i = 0; i < n - 1; ++i)
if (ipiv[i] == i)
{
 /* b[i+1] = b[i+1] = dl[i]*b[i] */
 /* Compute Complex multiply using nag_complex_multiply
 (a02ccc). */
 temp = nag_complex_multiply(dl[i], b[i]);
 /* Compute Complex subtraction using nag_complex_subtract
 (a02cbc). */
 b[i+1] = nag_complex_subtract(b[i+1], temp);
}
else
{
 temp = b[i];
 b[i] = b[i+1];
 /* Compute Complex multiply using nag_complex_multiply
 (a02ccc). */
 z1 = nag_complex_multiply(dl[i], b[i]);
 /* Compute Complex subtraction using nag_complex_subtract
 (a02cbc). */
 b[i+1] = nag_complex_subtract(temp, z1);
}
/* Solve U*x = b. */
/* Compute Complex division using nag_complex_divide (a02cdc). */
b[n-1] = nag_complex_divide(b[n-1], d[n-1]);
if (n > 1)
{
 /* Compute Complex multiply using nag_complex_multiply
 (a02ccc). */
 temp = nag_complex_multiply(du[n-2], b[n-1]);
 /* Compute Complex subtraction using nag_complex_subtract
 (a02cbc). */
 z1 = nag_complex_subtract(b[n-2], temp);
 /* Compute Complex division using nag_complex_divide (a02cdc). */
 b[n-2] = nag_complex_divide(z1, d[n-2]);
}
for (i = n - 3; i >= 0; --i)
{
 /* b[i] = (b[i]-du[i]*b[i+1]-du2[i]*b[i+2])/d[i]; */
 /* Compute Complex multiply using nag_complex_multiply
 (a02ccc). */
 temp = nag_complex_multiply(du[i], b[i+1]);
 z1 = nag_complex_multiply(du2[i], b[i+2]);
 /* Compute Complex addition using nag_complex_add
 (a02cac). */
 temp = nag_complex_add(temp, z1);
 /* Compute Complex subtraction using nag_complex_subtract
 (a02cbc). */
 z1 = nag_complex_subtract(b[i], temp);
 /* Compute Complex division using nag_complex_divide
 (a02cdc). */
 b[i] = nag_complex_divide(z1, d[i]);
}
return;

10.2 Program Data

nag_complex_sparse_eigensystem_option (f12arc) Example Program Data
10 4 20 : Vaues for nx, nev and ncv
10.3 Program Results

The 4 generalized Ritz values closest to \((500.000, 0.000)\) are:

1. \((509.9390, 0.0000)\)
2. \((380.9092, 0.0000)\)
3. \((659.1558, -0.0000)\)
4. \((271.9412, -0.0000)\)

11 Optional Arguments

Several optional arguments for the computational suite functions nag_complex_sparse_eigensystem_iter (f12apc) and nag_complex_sparse_eigensystem_sol (f12aqc), and for the banded driver nag_complex_banded_eigensystem_solve (f12auc), define choices in the problem specification or the algorithm logic. In order to reduce the number of formal arguments of nag_complex_sparse_eigensystem_iter (f12apc), nag_complex_sparse_eigensystem_sol (f12aqc) and nag_complex_banded_eigensystem_solve (f12auc) these optional arguments have associated default values that are appropriate for most problems. Therefore, you need only specify those optional arguments whose values are to be different from their default values.

The remainder of this section can be skipped if you wish to use the default values for all optional arguments.

The following is a list of the optional arguments available. A full description of each optional argument is provided in Section 11.1.

- Advisory
- Defaults
- Exact Shifts
- Generalized
- Initial Residual
- Iteration Limit
- Largest Imaginary
- Largest Magnitude
- Largest Real
- List
- Monitoring
- Nolist
- Print Level
- Random Residual
- Regular
- Regular Inverse
- Shifted Inverse
- Smallest Imaginary
- Smallest Magnitude
- Smallest Real
- Standard
- Supplied Shifts
- Tolerance
- Vectors

Optional arguments may be specified by calling nag_complex_sparse_eigensystem_option (f12arc) before a call to nag_complex_sparse_eigensystem_iter (f12apc) or nag_complex_banded_eigensystem_init (f12atc), but after a corresponding call to
nag_complex_sparse_eigensystem_init (f12anc) or nag_complex_banded_eigensystem_solve (f12auc).
One call is necessary for each optional argument. Any optional arguments you do not specify are set to their default values. Optional arguments you do specify are unaltered by
nag_complex_sparse_eigensystem_iter (f12apc), nag_complex_sparse_eigensystem_sol (f12aqc) and
nag_complex_banded_eigensystem_solve (f12auc) (unless they define invalid values) and so remain in
effect for subsequent calls unless you alter them.

11.1 Description of the Optional Arguments

For each option, we give a summary line, a description of the optional argument and details of
constraints.

The summary line contains:

- the keywords, where the minimum abbreviation of each keyword is underlined;
- a parameter value, where the letters a, i and r denote options that take character, integer and real
values respectively;
- the default value, where the symbol ϵ is a generic notation for machine precision (see
nag_machine_precision (X02AJC)).

Keywords and character values are case and white space insensitive.

Optional arguments used to specify files (e.g., Advisory and Monitoring) have type Nag_FileID. This
ID value must either be set to 0 (the default value) in which case there will be no output, or will be as
returned by a call of nag_open_file (x04acc).

Advisory

Default $= 0$

(See Section 3.2.1.1 in the Essential Introduction for further information on NAG data types.)

Advisory messages are output to Nag_FileID Advisory during the solution of the problem.

Defaults

This special keyword may be used to reset all optional arguments to their default values.

Exact Shifts

Supplied Shifts

During the Arnoldi iterative process, shifts are applied as part of the implicit restarting scheme. The shift
strategy used by default and selected by the optional argument Exact Shifts is strongly recommended
over the alternative Supplied Shifts and will always be used by
nag_complex_banded_eigensystem_solve (f12auc).

If Exact Shifts are used then these are computed internally by the algorithm in the implicit restarting
scheme. This strategy is generally effective and cheaper to apply in terms of number of operations than
using explicit shifts.

If Supplied Shifts are used then, during the Arnoldi iterative process, you must supply shifts through
array arguments of nag_complex_sparse_eigensystem_iter (f12apc) when
nag_complex_sparse_eigensystem_iter (f12apc) returns with $\text{irevcm} = 3$; the complex shifts are supplied
in y. This option should only be used if you are an experienced user since this requires some algorithmic
knowledge and because more operations are usually required than for the implicit shift scheme. Details
on the use of explicit shifts and further references on shift strategies are available in
Lehoucq et al. (1998).

Iteration Limit

The limit on the number of Arnoldi iterations that can be performed before
nag_complex_sparse_eigensystem_iter (f12apc) or nag_complex_banded_eigensystem_solve (f12auc)
exits. If not all requested eigenvalues have converged to within Tolerance and the number of Arnoldi
iterations has reached this limit then nag_complex_sparse_eigensystem_iter (f12apc) or
nag_complex_banded_eigensystem_solve (f12auc) exits with an error;
nag_complex_banded_eigensystem_solve (f12auc) returns the number of converged eigenvalues, the converged eigenvalues and, if requested, the corresponding eigenvectors, while nag_complex_sparse_eigensystem_sol (f12aqc) can be called subsequent to nag_complex_sparse_eigensystem_iter (f12apc) to do the same.

The Arnoldi iterative method converges on a number of eigenvalues with given properties. The default is for nag_complex_sparse_eigensystem_iter (f12apc) or nag_complex_banded_eigensystem_solve (f12auc) to compute the eigenvalues of largest magnitude using Largest Magnitude. Alternatively, eigenvalues may be chosen which have Largest Real part, Largest Imaginary part, Smallest Magnitude, Smallest Real part or Smallest Imaginary part.

Note that these options select the eigenvalue properties for eigenvalues of OP (and B for Generalized problems), the linear operator determined by the computational mode and problem type.

Default
If Monitoring is set, then on final iteration, the norm of the residual; when computing the Schur form, the eigenvalues and Ritz estimates both before and after sorting; for each iteration, the norm of residual for compressed factorization and the compressed upper Hessenberg matrix \(H \); during re-orthogonalization, the initial/restarted starting vector; during the Arnoldi iteration loop, a restart is flagged and the number of the residual requiring iterative refinement; while applying shifts, the indices of the shifts being applied.

If Monitoring is set, then during the Arnoldi iteration loop, the Arnoldi vector number and norm of the current residual; while applying shifts, key measures of progress and the order of \(H \); while computing eigenvalues of \(H \), the last rows of the Schur and eigenvector matrices; when computing implicit shifts, the eigenvalues and Ritz estimates of \(H \).

If Monitoring is set, then during Arnoldi iteration loop: norms of key components and the active column of \(H \), norms of residuals during iterative refinement, the final upper Hessenberg matrix \(H \); while applying shifts: number of shifts, shift values, block indices, updated matrix \(H \); while computing eigenvalues of \(H \): the matrix \(H \), the computed eigenvalues and Ritz estimates.

Random Residual

Default

To begin the Arnoldi iterative process, nag_complex_sparse_eigensystem_iter (f12apc) and nag_complex_banded_eigensystem_solve (f12auc) requires an initial residual vector. By default nag_complex_sparse_eigensystem_iter (f12apc) and nag_complex_banded_eigensystem_solve (f12auc) provides its own random initial residual vector; this option can also be set using optional argument Random Residual. Alternatively, you can supply an initial residual vector (perhaps from a previous computation) to nag_complex_sparse_eigensystem_iter (f12apc) and nag_complex_banded_eigensystem_solve (f12auc) through the array argument resid; this option can be set using optional argument Initial Residual.

Regular

Default

Shifted Inverse

These options define the computational mode which in turn defines the form of operation \(OP(x) \) to be performed by nag_complex_banded_eigensystem_solve (f12auc) or when nag_complex_sparse_eigensystem_iter (f12apc) returns with irevcm = −1 or 1 and the matrix-vector product \(Bx \) when nag_complex_sparse_eigensystem_iter (f12apc) returns with irevcm = −2.

Given a **Standard** eigenvalue problem in the form \(Ax = \lambda x \) then the following modes are available with the appropriate operator \(OP(x) \).

- **Regular** \(OP = A \)
- **Shifted Inverse** \(OP = (A - \sigma I)^{-1} \)

Given a **Generalized** eigenvalue problem in the form \(Ax = \lambda Bx \) then the following modes are available with the appropriate operator \(OP(x) \).

- **Regular Inverse** \(OP = B^{-1}A \)
- **Shifted Inverse** \(OP = (A - \sigma B)^{-1} B \)

Standard

Default

Generalized

The problem to be solved is either a standard eigenvalue problem, \(Ax = \lambda x \), or a generalized eigenvalue problem, \(Ax = \lambda Bx \). The optional argument **Standard** should be used when a standard eigenvalue problem is being solved and the optional argument **Generalized** should be used when a generalized eigenvalue problem is being solved.
Tolerance

r

Default $= \epsilon$

An approximate eigenvalue has deemed to have converged when the corresponding Ritz estimate is within **Tolerance** relative to the magnitude of the eigenvalue.

Vectors

Default $= \text{RITZ}$

The function `nag_complex_sparse_eigensystem_sol` (f12aqc) or `nag_complex_banded_eigensystem_solve` (f12auc) can optionally compute the Schur vectors and/or the eigenvectors corresponding to the converged eigenvalues. To turn off computation of any vectors the option **Vectors** $=$ NONE should be set. To compute only the Schur vectors (at very little extra cost), the option **Vectors** $=$ SCHUR should be set and these will be returned in the array argument v of `nag_complex_sparse_eigensystem_sol` (f12aqc) or `nag_complex_banded_eigensystem_solve` (f12auc). To compute the eigenvectors (Ritz vectors) corresponding to the eigenvalue estimates, the option **Vectors** $=$ RITZ should be set and these will be returned in the array argument z of `nag_complex_sparse_eigensystem_sol` (f12aqc) or `nag_complex_banded_eigensystem_solve` (f12auc), if z is set equal to v (as in Section 10) then the Schur vectors in v are overwritten by the eigenvectors computed by `nag_complex_sparse_eigensystem_sol` (f12aqc) or `nag_complex_banded_eigensystem_solve` (f12auc).