NAG Library Function Document

nag_real_banded_sparse_eigensystem_sol (f12agc)

Note: this function uses optional arguments to define choices in the problem specification. If you wish to use default settings for all of the optional arguments, then the option setting function nag_real_sparse_eigensystem_option (f12adc) need not be called. If, however, you wish to reset some or all of the settings please refer to Section 11 in nag_real_sparse_eigensystem_option (f12adc) for a detailed description of the specification of the optional arguments.

1 Purpose

nag_real_banded_sparse_eigensystem_sol (f12agc) is the main solver function in a suite of functions consisting of nag_real_sparse_eigensystem_option (f12adc), nag_real_banded_sparse_eigensystem_init (f12afc) and nag_real_banded_spars e_eigensystem_sol (f12agc). It must be called following an initial call to nag_real_banded_sparse_eigensystem_init (f12afc) and following any calls to nag_real_sparse_eigensystem_option (f12adc).

nag_real_banded_sparse_eigensystem_sol (f12agc) returns approximations to selected eigenvalues, and (optionally) the corresponding eigenvectors, of a standard or generalized eigenvalue problem defined by real banded nonsymmetric matrices. The banded matrix must be stored using the LAPACK column ordered storage format for real banded nonsymmetric matrices; please refer to Section 3.3.4 in the f07 Chapter Introduction.

2 Specification

#include <nag.h>
#include <nagf12.h>

void nag_real_banded_sparse_eigensystem_sol (Integer kl, Integer ku,
const double ab[], const double mb[], double sigmar, double sigmai,
Integer *nconv, double dr[], double di[], double z[], double resid[],
double v[], double comm[], Integer icomm[], NagError *fail)

3 Description

The suite of functions is designed to calculate some of the eigenvalues, \(\lambda \), (and optionally the corresponding eigenvectors, \(x \)) of a standard eigenvalue problem \(Ax = \lambda x \), or of a generalized eigenvalue problem \(Ax = \lambda Bx \) of order \(n \), where \(n \) is large and the coefficient matrices \(A \) and \(B \) are banded, real and nonsymmetric.

Following a call to the initialization function nag_real_banded_sparse_eigensystem_init (f12afc), nag_real_banded_sparse_eigensystem_sol (f12agc) returns the converged approximations to eigenvalues and (optionally) the corresponding approximate eigenvectors and/or an orthonormal basis for the associated approximate invariant subspace. The eigenvalues (and eigenvectors) are selected from those of a standard or generalized eigenvalue problem defined by real banded nonsymmetric matrices. There is negligible additional computational cost to obtain eigenvectors; an orthonormal basis is always computed, but there is an additional storage cost if both are requested.

The banded matrices \(A \) and \(B \) must be stored using the LAPACK column ordered storage format for banded nonsymmetric matrices; please refer to Section 3.3.2 in the f07 Chapter Introduction for details on this storage format.

nag_real_banded_sparse_eigensystem_sol (f12agc) is based on the banded driver functions dnbdr1 to dnbdr6 from the ARPACK package, which uses the Implicitly Restarted Arnoldi iteration method. The method is described in Lehoucq and Sorensen (1996) and Lehoucq (2001) while its use within the ARPACK software is described in great detail in Lehoucq et al. (1998). An evaluation of software for computing eigenvalues of sparse nonsymmetric matrices is provided in Lehoucq and Scott (1996). This suite of functions offers the same functionality as the ARPACK banded driver software for real
nonsymmetric problems, but the interface design is quite different in order to make the option setting clearer and to combine the different drivers into a general purpose function.

nag_real_banded_sparse_eigensystem_sol (f12agc), is a general purpose function that must be called following initialization by **nag_real_banded_sparse_eigensystem_init** (f12afc). **nag_real_banded_sparse_eigensystem_sol** (f12agc) uses options, set either by default or explicitly by calling **nag_real_sparse_eigensystem_option** (f12adc), to return the converged approximations to selected eigenvalues and (optionally):

- the corresponding approximate eigenvectors;
- an orthonormal basis for the associated approximate invariant subspace;
- both.

Please note that for **Generalized** problems, the **Shifted Inverse Imaginary** and **Shifted Inverse Real** inverse modes are only appropriate if either A or B is symmetric semi-definite. Otherwise, if A or B is non-singular, the **Standard** problem can be solved using the matrix $B^{-1}A$ (say).

4 References

5 Arguments

1:
 kl – Integer

 Input

 On entry: the number of subdiagonals of the matrices A and B.

 Constraint: $kl \geq 0$.

2:
 ku – Integer

 Input

 On entry: the number of superdiagonals of the matrices A and B.

 Constraint: $ku \geq 0$.

3:
 ab[dim] – const double

 Input

 Note: the dimension, dim, of the array ab must be at least $\max(1, n, (2 \times kl + ku + 1))$ (see **nag_real_banded_sparse_eigensystem_init** (f12afc)).

 On entry: must contain the matrix A in LAPACK column-ordered banded storage format for nonsymmetric matrices (see Section 3.3.4 in the f07 Chapter Introduction).

4:
 mb[dim] – const double

 Input

 Note: the dimension, dim, of the array mb must be at least $\max(1, n, (2 \times kl + ku + 1))$ (see **nag_real_banded_sparse_eigensystem_init** (f12afc)).

 On entry: must contain the matrix B in LAPACK column-ordered banded storage format for nonsymmetric matrices (see Section 3.3.4 in the f07 Chapter Introduction).
On entry: if one of the Shifted Inverse Real modes (see nag_real_sparse_eigensystem_option (f12adc)) have been selected then \texttt{sigmar} must contain the real part of the shift used; otherwise \texttt{sigmar} is not referenced. Section 4.3.4 in the f12 Chapter Introduction describes the use of shift and inverse transformations.

On entry: if one of the Shifted Inverse Real modes (see nag_real_sparse_eigensystem_option (f12adc)) have been selected then \texttt{sigmai} must contain the imaginary part of the shift used; otherwise \texttt{sigmai} is not referenced. Section 4.3.4 in the f12 Chapter Introduction describes the use of shift and inverse transformations.

On exit: the number of converged eigenvalues.

Note: the dimension, \texttt{dim}, of the array \texttt{dr} must be at least \texttt{nev} + 1 (see nag_real_banded_sparse_eigensystem_init (f12afc)).

On exit: the first \texttt{nconv} locations of the array \texttt{dr} contain the real parts of the converged approximate eigenvalues. The number of eigenvalues returned may be one more than the number requested by \texttt{nev} since complex values occur as conjugate pairs and the second in the pair can be returned in position \texttt{nev} + 1 of the array.

Note: the dimension, \texttt{dim}, of the array \texttt{di} must be at least \texttt{nev} + 1 (see nag_real_banded_sparse_eigensystem_init (f12afc)).

On exit: the first \texttt{nconv} locations of the array \texttt{di} contain the imaginary parts of the converged approximate eigenvalues. The number of eigenvalues returned may be one more than the number requested by \texttt{nev} since complex values occur as conjugate pairs and the second in the pair can be returned in position \texttt{nev} + 1 of the array.

Note: the dimension, \texttt{dim}, of the array \texttt{z} must be at least \texttt{n} \times (\texttt{nev} + 1) (see nag_real_banded_sparse_eigensystem_init (f12afc)).

On exit: if the default option \texttt{Vectors} = Ritz has been selected then \texttt{z} contains the final set of eigenvectors corresponding to the eigenvalues held in \texttt{dr} and \texttt{di}. The complex eigenvector associated with the eigenvalue with positive imaginary part is stored in two consecutive array segments. The first segment holds the real part of the eigenvector and the second holds the imaginary part. The eigenvector associated with the eigenvalue with negative imaginary part is simply the complex conjugate of the eigenvector associated with the positive imaginary part.

For example, if \texttt{di}[0] is nonzero, the first eigenvector has real parts stored in locations \texttt{z}[^{i}], for \(i = 0, 1, \ldots, \texttt{n} - 1 \) and imaginary parts stored in \texttt{z}[^{i}], for \(i = \texttt{n}, \ldots, 2\texttt{n} - 1 \).

Note: the dimension, \texttt{dim}, of the array \texttt{resid} must be at least \texttt{n} (see nag_real_banded_sparse_eigensystem_init (f12afc)).

On entry: need not be set unless the option \texttt{Initial Residual} has been set in a prior call to nag_real_sparse_eigensystem_option (f12adc) in which case \texttt{resid} must contain an initial residual vector.

On exit: contains the final residual vector.
12: \(v[dim] \) – double

Output

Note: the dimension, \(dim \), of the array \(v \) must be at least \(\max(1, n \times ncv) \) (see nag_real_banded_sparse_eigensystem_init (f12afc)).

On exit: if the option **Vectors** (see nag_real_sparse_eigensystem_option (f12adc)) has been set to Schur or Ritz then the first \(nconv \) sections of \(v \), of length \(n \), will contain approximate Schur vectors that span the desired invariant subspace.

The \(i \)th Schur vector is stored in locations \(v[n \times (i-1)+j-1] \), for \(i = 1, 2, \ldots, nconv \) and \(j = 1, 2, \ldots, n \).

13: \(\text{comm}[dim] \) – double

Communication Array

Note: the dimension, \(dim \), of the array \(\text{comm} \) must be at least \(\max(1, lcomm) \) (see nag_real_banded_sparse_eigensystem_init (f12afc)).

On entry: must remain unchanged from the prior call to nag_real_sparse_eigensystem_option (f12adc) and nag_real_banded_sparse_eigensystem_init (f12afc).

On exit: contains no useful information.

14: \(\text{icomm}[dim] \) – Integer

Communication Array

Note: the dimension, \(dim \), of the array \(\text{icomm} \) must be at least \(\max(1, licomm) \) (see nag_real_banded_sparse_eigensystem_init (f12afc)).

On entry: must remain unchanged from the prior call to nag_real_sparse_eigensystem_option (f12adc) and nag_real_banded_sparse_eigensystem_init (f12afc).

On exit: contains no useful information.

15: **fail** – NagError *

Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 **Error Indicators and Warnings**

NE_ALLOC_FAIL

Dynamic memory allocation failed.

See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM

On entry, argument \(\langle \text{value} \rangle \) had an illegal value.

NE_COMP_BAND_FAC

Failure during internal factorization of complex banded matrix. Please contact NAG.

NE_COMP_BAND_SOL

Failure during internal solution of complex banded matrix. Please contact NAG.

NE_INITIALIZATION

Either the initialization function has not been called prior to the first call of this function or a communication array has become corrupted.

NE_INT

On entry, \(kl = \langle \text{value} \rangle \).

Constraint: \(kl \geq 0 \).
On entry, \(ku = \text{(value)} \).
Constraint: \(ku \geq 0 \).

The maximum number of iterations \(\leq 0 \), the option \textbf{Iteration Limit} has been set to \(\text{(value)} \).

\textbf{NE_INTERNAL_EIGVAL_FAIL}

Error in internal call to compute eigenvalues and corresponding error bounds of the current upper Hessenberg matrix. Please contact NAG.

\textbf{NE_INTERNAL_EIGVEC_FAIL}

Error in internal call to compute eigenvectors. Please contact NAG.

\textbf{NE_INTERNAL_ERROR}

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

\textbf{NE_INVALID_OPTION}

On entry, \textbf{Vectors} = Select, but this is not yet implemented.

\textbf{NE_MAX_ITER}

The maximum number of iterations has been reached. The maximum number of iterations \(= \text{(value)} \). The number of converged eigenvalues \(= \text{(value)} \).

\textbf{NE_NO_ARNO LDI_FAC}

Could not build an Arnoldi factorization. The size of the current Arnoldi factorization \(= \text{(value)} \).

\textbf{NE_NO_LICENCE}

Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

\textbf{NE_NO_SHIFTS_APPLIED}

No shifts could be applied during a cycle of the implicitly restarted Lanczos iteration.

\textbf{NE_OPT_INCOMPAT}

The options \textbf{Generalized} and \textbf{Regular} are incompatible.

\textbf{NE_REAL_BAND_FAC}

Failure during internal factorization of real banded matrix. Please contact NAG.

\textbf{NE_REAL_BAND_SOL}

Failure during internal solution of real banded matrix. Please contact NAG.

\textbf{NE_SCHUR_EIG_FAIL}

During calculation of a real Schur form, there was a failure to compute a number of eigenvalues. Please contact NAG.

\textbf{NE_SCHUR_REORDER}

The computed Schur form could not be reordered by an internal call. Please contact NAG.
NE_TRANSFORM_OVFL
Overflow occurred during transformation of Ritz values to those of the original problem.

NE_ZERO_EIGS_FOUND
The number of eigenvalues found to sufficient accuracy is zero.

NE_ZERO_INIT_RESID
The option Initial Residual was selected but the starting vector held in resid is zero.

NE_ZERO_SHIFT
The option Shifted Inverse Imaginary has been selected and sigmai = 0 on entry; sigmai must be nonzero for this mode of operation.

7 Accuracy
The relative accuracy of a Ritz value, λ, is considered acceptable if its Ritz estimate \leq Tolerance $\times |\lambda|$. The default Tolerance used is the machine precision given by nag_machine_precision (X02AJC).

8 Parallelism and Performance
nag_real_banded_sparse_eigensystem_sol (f12agc) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.

nag_real_banded_sparse_eigensystem_sol (f12agc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users’ Note for your implementation for any additional implementation-specific information.

9 Further Comments
None.

10 Example
This example constructs the matrices A and B using LAPACK band storage format and solves $Ax = \lambda Bx$ in shifted imaginary mode using the complex shift σ.

10.1 Program Text
/* nag_real_banded_sparse_eigensystem_sol (f12agc) Example Program. *
 * * Copyright 2014 Numerical Algorithms Group. *
 * * Mark 8, 2005. *
 */
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <stdio.h>
#include <naga02.h>
#include <nagf12.h>
#include <nagf16.h>

int main(void)
{

/* Constants */
double rho = 100.0;

/* Scalars */
Complex res, eig;
double alpha, h, resr, resi, sigmai, sigmar;
Integer exit_status, i, j, k, kl, ksub, ksup, ku, lcomm, licomm;
Integer ldab, n, nconv, ncv, nev, nx;

/* Nag types */
Nag_Boolean first;
NagError fail;

/* Arrays */
double *ab = 0, *ax = 0, *comm = 0, *eigvr = 0, *eigvi = 0, *eigest = 0;
double *mb = 0, *mx = 0, *resid = 0, *v = 0;
Integer *icomm = 0;

exit_status = 0;
INIT_FAIL(fail);

printf("nag_real_banded_sparse_eigensystem_sol (f12agc) Example ",
"Program Results\n");

#ifdef _WIN32
scanf_s("%[*[\n] ");
#else
scanf("%[*[\n] ");
#endif

#ifdef _WIN32
scanf_s("%"NAG_IFMT"%"NAG_IFMT"%"NAG_IFMT"%lf%lf%*[\n] ", &nx, &nev, &ncv,
 &sigmar, &sigmai);
#else
scanf("%"NAG_IFMT"%"NAG_IFMT"%"NAG_IFMT"%lf%lf%*[\n] ", &nx, &nev, &ncv,
 &sigmar, &sigmai);
#endif

n = nx * nx;
/* ku, kl are number of superdiagonals and subdiagonals within the */
/* band of matrices A and M. */
kl = nx;
ku = nx;
/* ldab is the width of the band required to store the */
/* factorisation of the matrix A. */
ldab = 2*kl + ku + 1;
/* Allocate memory. */
if (!(ab = NAG_ALLOC(ldab * n, double)) ||
 !(ax = NAG_ALLOC(n, double)) ||
 !(eigvr = NAG_ALLOC(ncv, double)) ||
 !(eigvi = NAG_ALLOC(ncv, double)) ||
 !(eigest = NAG_ALLOC(ncv, double)) ||
 !(mb = NAG_ALLOC(ldab * n, double)) ||
 !(mx = NAG_ALLOC(n, double)) ||
 !(resid = NAG_ALLOC(n, double)) ||
 !(v = NAG_ALLOC(ncv * n, double)))
{
 printf("Allocation failure\n");
 exit_status = -1;
goto END;
}

/* Initialise communication arrays for problem using */
/* nag_real_banded_sparse_eigensystem_init (f12afc). */
/* The first call sets lcomm = licomm = -1 to perform a workspace */
/* query. */
lcomm = licomm = -1;
if (!(comm = NAG_ALLOC(1, double)) ||
 !(icomm = NAG_ALLOC(1, Integer)))
{
 printf("Allocation failure\n");
 exit_status = -1;
goto END;
}
nag_real_banded_sparse_eigensystem_init(n, nev, ncv, icomm, licomm, comm, lcomm, &fail);

if (fail.code != NE_NOERROR)
{
 printf("Error from nag_real_banded_sparse_eigensystem_init
"
"(f12afc).\n%s\n", fail.message);
 exit_status = 1;
 goto END;
}

lcomm = (Integer)comm[0];
licomm = icomm[0];
NAG_FREE(comm);
NAG_FREE(icomm);
if (!(!comm = NAG_ALLOC(lcomm, double)) ||
 (!icom = NAG_ALLOC(licomm, Integer)))
{
 printf("Allocation failure\n");
 exit_status = -1;
 goto END;
}

nag_real_banded_sparse_eigensystem_init(n, nev, ncv, icomm, licomm, comm, lcomm, &fail);

if (fail.code != NE_NOERROR)
{
 printf("Error from nag_real_banded_sparse_eigensystem_init
"
"(f12afc).\n%s\n", fail.message);
 exit_status = 1;
 goto END;
}

/* Select the required spectrum using
 nag_real_sparse_eigensystem_option (f12adc). */
 nag_real_sparse_eigensystem_option("SHIFTED IMAGINARY", icomm, comm, &fail);

/* Select the problem type using
 nag_real_sparse_eigensystem_option (f12adc). */
 nag_real_sparse_eigensystem_option("GENERALIZED", icomm, comm, &fail);

/* Construct the matrix A in banded form and store in AB. */
/* Zero out matrices first */
for (j = 0; j < n*ldab; ++j)
{
 ab[j] = 0.0;
 mb[j] = 0.0;
}

/* Main diagonal of A. */
 k = kl + ku;
for (j = 0; j < n; ++j)
{
 ab[k] = 4.0;
 mb[k] = 4.0;
 k = k + ldab;
}

/* First subdiagonal and superdiagonal of A. */
ksub = kl + ku - 1;
ksub = kl + ku + 1;
h = .5 * rho / (double)(nx + 1);
for (i = 1; i <= nx; ++i)
{
 ksub = ksub + ldab;
 for (j = 1; j <= nx - 1; ++j)
 {
 ab[ksub] = -1.0 + h;
 ab[ksub] = -1.0 - h;
 ksub = ksub + ldab;
 }
 ksub = ksub + ldab;
}

 ksub = kl + ku + 1 + ldab;
ksub = kl + ku - 1;
for (j = 1; j <= n - 1; ++j)
{
 mb[ksup] = 1.;
 mb[ksub] = 1.;
 ksup = ksup + ldab;
 ksub = ksub + ldab;
}

/* KL-th subdiagonal and KU-th super-diagonal. */
ksup = k1 + nx*ldab;
ksub = 2*k1 + ku;
for (i = 1; i <= nx - 1; ++i)
{
 for (j = 1; j <= nx; ++j)
 {
 ab[ksup] = -1.;
 ab[ksub] = -1.;
 ksup = ksup + ldab;
 ksub = ksub + ldab;
 }
}

/* Find eigenvalues closest in value to SIGMA and corresponding eigenvectors using nag_real_banded_sparse_eigensystem_sol (f12agc). */

nag_real_banded_sparse_eigensystem_sol(kl, ku, ab, mb, sigmar, sigmai, &nconv, eigvr, eigvi, v, resid, v, comm, icomm, &fail);

if (fail.code == NE_NOERROR)
{
 /* Compute the residual norm ||A*x - lambda*Mx||. */
 first = Nag_TRUE;
 k = 0;
 for (j = 0; j <= nconv-1; ++j)
 {
 if (eigvi[j] == 0.)
 {
 /* Eigenvalue is Real. */
 /* ax <- AV_k, where V_k is kth Ritz vector. */
 /* Compute matrix-vector multiply using nag_dgbmv (f16pbc). */
 nag_dgbmv(Nag_ColMajor, Nag_NoTrans, n, n, kl, ku, 1., &ab[kl], ldab, &v[k], 1, 0., ax, 1, &fail);
 /* mx <- MV_k. */
 nag_dgbmv(Nag_ColMajor, Nag_NoTrans, n, n, kl, ku, 1., &mb[kl], ldab, &v[k], 1, 0., mx, 1, &fail);
 /* ax <- ax - (lambda_j) * mx. */
 alpha = -eigvr[j];
 /* Compute vector update using nag_daxpby (f16ecc). */
 nag_daxpby(n, alpha, mx, 1, ax, 1, &fail);
 /* resr = norm(ax). */
 /* Compute 2-norm of Ritz estimates using nag_dge_norm (f16rac). */
 nag_dge_norm(Nag_ColMajor, Nag_FrobeniusNorm, n, 1, ax, 1, &resr, &fail);
 /* Scale. */
 eigest[j] = resr / fabs(eigvr[j]);
 }
 else if (first)
 {
 /* First or a conjugate pair of eigenvalues. */
 /* Real part of residual Re[A*x-lambda*Mx]. */
 /* ax <- AV_k, where V_k is real part of kth Ritz vector. */
 /* Compute matrix-vector multiply using nag_dgbmv (f16pbc). */
 nag_dgbmv(Nag_ColMajor, Nag_NoTrans, n, n, kl, ku, 1., &ab[kl], ldab, &v[k], 1, 0., ax, 1, &fail);
 /* mx <- MV_k */
 nag_dgbmv(Nag_ColMajor, Nag_NoTrans, n, n, kl, ku, 1., &mb[kl], ldab, &v[k], 1, 0., mx, 1, &fail);
 /* ax <- ax - (lambda_j).re * mx. */
 }
 }
}
else if (first)
{
 /* First or a conjugate pair of eigenvalues. */
 /* Real part of residual Re[A*x-lambda*Mx]. */
 /* ax <- AV_k, where V_k is real part of kth Ritz vector. */
 /* Compute matrix-vector multiply using nag_dgbmv (f16pbc). */
 /* mx <- MV_k */
 /* ax <- ax - (lambda_j).re * mx. */
}
/* Compute vector update using nag_daxpby (f16ecc). */
alpha = -eigvr[j];
nag_daxpby(n, alpha, mx, 1, 1., ax, 1, &fail);
/* mx <- MW_k where W_k is imaginary part kth Ritz vector. */
nag_dgbmv(Nag_ColMajor, Nag_NoTrans, n, n, kl, ku, 1.,
&mb[kl], ldab, &v[k+n], 1, 0., mx, 1, &fail);
/* ax <- ax - (lambda_j).im * mx. */
alpha = eigvi[j];
nag_daxpby(n, alpha, mx, 1, 1., ax, 1, &fail);
/* resr = norm(ax). */
/* Compute 2-norm of Ritz estimates using nag_dge_norm (f16rac). */
nag_dge_norm(Nag_ColMajor, Nag_FrobeniusNorm, n, 1, ax,
n, &resr, &fail);
/* Imaginary part of residual Im[Ax-lambdaMx]. */
/* Compute matrix-vector multiply using nag_dgbmv (f16pbc). */
nag_dgbmv(Nag_ColMajor, Nag_NoTrans, n, n, kl, ku, 1.,
&ab[kl], ldab, &v[k+n], 1, 0., ax, 1, &fail);
/* ax <- ax - (lambda_j).re * mx. */
alpha = -eigv[j];
nag_daxpby(n, alpha, mx, 1, 1., ax, 1, &fail);
/* mx <- MV_k. */
nag_dgbmv(Nag_ColMajor, Nag_NoTrans, n, n, kl, ku, 1.,
&mb[kl], ldab, &v[k], 1, 0., mx, 1, &fail);
/* ax <- ax - (lambda_j).im * mx. */
alpha = -eigvi[j];
nag_daxpby(n, alpha, mx, 1, 1., ax, 1, &fail);
/* resi = norm(ax). */
/* Scale residual using Ritz value. */
/* Assign to Complex type using nag_complex (a02bac) */
res = nag_complex(resr, resi);
eig = nag_complex(eigvr[j], eigvi[j]);
eigest[j] = nag_complex_abs(res)/nag_complex_abs(eig);
/* Set residual for second in conjugate pair. */
eigest[j+1] = eigest[j];
first = Nag_FALSE;
}
else
{
/* Second of complex conjugate pair; */
/* Already got residual from first in pair. */
first = Nag_TRUE;
}
k = k + n;
}

/* Print computed eigenvalues. */
printf("\n The %4"NAG_IFMT" generalized Ritz values", nconv);
printf(" closest to \n");
printf("%7.4f, +-%7.4f \n", sigmar, sigmai);
for (j = 0; j <= nconv-1; ++j)
{
if (eigest[j] <= 1.0e-10)
{
printf("%8"NAG_IFMT"%5s(%7.4f, %7.4f).\n", j+1, "", eigvr[j], eigvi[j]);
}
else
{
printf("%8"NAG_IFMT"%5s(%7.4f, %7.4f)%5s%18.16f.\n", j+1, "", eigvr[j], eigvi[j], " *** ", eigest[j]);
}
}
else
{
 printf("Error from ",
 "nag_real_banded_sparse_eigensystem_sol (f12agc).\n%s\n", fail.message);
 exit_status = 1;
 goto END;
}
END:
NAG_FREE(ab);
NAG_FREE(ax);
NAG_FREE(comm);
NAG_FREE(eigvr);
NAG_FREE(eigvi);
NAG_FREE(eigest);
NAG_FREE(mb);
NAG_FREE(mx);
NAG_FREE(resid);
NAG_FREE(v);
NAG_FREE(icomm);

return exit_status;
}

10.2 Program Data

nag_real_banded_sparse_eigensystem_sol (f12agc) Example Program Data
10 4 10 0.4 0.6 : Values for nx, nev, ncv, sigmar, sigmai

10.3 Program Results

nag_real_banded_sparse_eigensystem_sol (f12agc) Example Program Results

The 4 generalized Ritz values closest to
(0.4000, +- 0.6000) are:

1 (0.3610, 0.7223).
2 (0.3610, -0.7223).
3 (0.4598, -0.7199).
4 (0.4598, 0.7199).