NAG Library Function Document

nag_superlu_lu_factorize (f11mec)

1 Purpose

nag_superlu_lu_factorize (f11mec) computes the LU factorization of a real sparse matrix in compressed column (Harwell–Boeing), column-permuted format.

2 Specification

```c
#include <nag.h>
#include <nagf11.h>
void nag_superlu_lu_factorize (Integer n, const Integer irowix[],
const double a[], Integer iprm[], double thresh, Integer nzlmx,
Integer *nzlumx, Integer *nzumx, Integer il[], double lval[],
Integer iu[], double uval[], Integer *nnzl, Integer *nnzu, double *flop,
NagError *fail)
```

3 Description

Given a real sparse matrix \(A \), \(\text{nag_superlu_lu_factorize (f11mec)} \) computes an LU factorization of \(A \) with partial pivoting, \(P_t A P_c = LU \), where \(P_t \) is a row permutation matrix (computed by \(\text{nag_superlu_lu_factorize (f11mec)} \)), \(P_c \) is a (supplied) column permutation matrix, \(L \) is unit lower triangular and \(U \) is upper triangular. The column permutation matrix, \(P_c \), must be computed by a prior call to \(\text{nag_superlu_column_permutation (f11mdc)} \). The matrix \(A \) must be presented in the column permuted, compressed column (Harwell–Boeing) format.

The \(LU \) factorization is output in the form of four one-dimensional arrays: integer arrays \(il \) and \(iu \) and real-valued arrays \(lval \) and \(uval \). These describe the sparsity pattern and numerical values in the \(L \) and \(U \) matrices. The minimum required dimensions of these arrays cannot be given as a simple function of the size arguments (order and number of nonzero values) of the matrix \(A \). This is due to unpredictable fill-in created by partial pivoting. \(\text{nag_superlu_lu_factorize (f11mec)} \) will, on return, indicate which dimensions of these arrays were not adequate for the computation or (in the case of one of them) give a firm bound. You should then allocate more storage and try again.

4 References

5 Arguments

1: \(n \) – Integer

Input

On entry: \(n \), the order of the matrix \(A \).

Constraint: \(n \geq 0 \).

2: \(\text{irowix}[\text{dim}] \) – const Integer

Input

Note: the dimension, \(\text{dim} \), of the array \(\text{irowix} \) must be at least \(nnz \), the number of nonzeros of the sparse matrix \(A \).

On entry: the row index array of sparse matrix \(A \).
3: \texttt{a[dim]} – const double \hfill Input

Note: the dimension, \texttt{dim}, of the array \texttt{a} must be at least \texttt{nnz}, the number of nonzeros of the sparse matrix \texttt{A}.

\textit{On entry:} the array of nonzero values in the sparse matrix \texttt{A}.

4: \texttt{iprm[7 \times n]} – Integer \hfill Input/Output

\textit{On entry:} contains the column permutation which defines the permutation \texttt{P_c} and associated data structures as computed by function \texttt{nag_superlu_column_permutation (f11mdc)}.

\textit{On exit:} part of the array is modified to record the row permutation \texttt{P_r} determined by pivoting.

5: \texttt{thresh} – double \hfill Input

\textit{On entry:} the diagonal pivoting threshold, \(t \). At step \texttt{j} of the Gaussian elimination, if \(|A_{ij}| \geq t \left(\max_{i,j \neq j} |A_{ij}| \right) \), use \(A_{ij} \) as a pivot, otherwise use \(\max_{i \neq j} |A_{ij}| \). A value of \(t = 1 \) corresponds to partial pivoting, a value of \(t = 0 \) corresponds to always choosing the pivot on the diagonal (unless it is zero).

\textit{Suggested value:} \texttt{thresh} = 1.0. Smaller values may result in a faster factorization, but the benefits are likely to be small in most cases. It might be possible to use \texttt{thresh = 0.0} if you are confident about the stability of the factorization, for example, if \texttt{A} is diagonally dominant.

\textit{Constraint:} \(0.0 \leq \texttt{thresh} \leq 1.0 \).

6: \texttt{nzlmx} – Integer \hfill Input

\textit{On entry:} indicates the available size of array \texttt{il}. The dimension of \texttt{il} should be at least \(7 \times n + \texttt{nzlmx} + 4 \). A good range for \texttt{nzlmx} that works for many problems is \(\texttt{nnz} \) to \(8 \times \texttt{nnz} \), where \(\texttt{nnz} \) is the number of nonzeros in the sparse matrix \texttt{A}. If, on exit, \texttt{fail.code} = \texttt{NE_NZLMX_TOO_SMALL}, the given \texttt{nzlmx} was too small and you should attempt to provide more storage and call the function again.

\textit{Constraint:} \(\texttt{nzlmx} \geq 1 \).

7: \texttt{nzlumx} – Integer * \hfill Input/Output

\textit{On entry:} indicates the available size of array \texttt{lval}. The dimension of \texttt{lval} should be at least \texttt{nzlumx}.

\textit{Constraint:} \(\texttt{nzlumx} \geq 1 \).

\textit{On exit:} if \texttt{fail.code} = \texttt{NE_NZLUMX_TOO_SMALL}, the given \texttt{nzlumx} was too small and is reset to a value that will be sufficient. You should then provide the indicated storage and call the function again.

8: \texttt{nzumx} – Integer \hfill Input

\textit{On entry:} indicates the available sizes of arrays \texttt{iu} and \texttt{uval}. The dimension of \texttt{iu} should be at least \(2 \times n + \texttt{nzumx} + 1 \) and the dimension of \texttt{uval} should be at least \texttt{nzumx}. A good range for \texttt{nzumx} that works for many problems is \(\texttt{nnz} \) to \(8 \times \texttt{nnz} \), where \(\texttt{nnz} \) is the number of nonzeros in the sparse matrix \texttt{A}. If, on exit, \texttt{fail.code} = \texttt{NE_NZUMX_TOO_SMALL}, the given \texttt{nzumx} was too small and you should attempt to provide more storage and call the function again.

\textit{Constraint:} \(\texttt{nzumx} \geq 1 \).

9: \texttt{il[7 \times n + \texttt{nzlmx} + 4]} – Integer \hfill Output

\textit{On exit:} encapsulates the sparsity pattern of matrix \texttt{L}.

10: \texttt{lval[nzlumx]} – double \hfill Output

\textit{On exit:} records the nonzero values of matrix \texttt{L} and some of the nonzero values of matrix \texttt{U}.
11: \[\text{iu}[2 \times n + \text{nzumx} + 1] \text{ – Integer} \]
 On exit: encapsulates the sparsity pattern of matrix \(U \).

12: \[\text{uval[nzumx]} \text{ – double} \]
 On exit: records some of the nonzero values of matrix \(U \).

13: \[\text{nnzl} \text{ – Integer *} \]
 On exit: the number of nonzero values in the matrix \(L \).

14: \[\text{nnzu} \text{ – Integer *} \]
 On exit: the number of nonzero values in the matrix \(U \).

15: \[\text{flop} \text{ – double *} \]
 On exit: the number of floating-point operations performed.

16: \[\text{fail} \text{ – NagError *} \]
 The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM
On entry, argument \(\langle value \rangle \) had an illegal value.

NE_INT
On entry, \(n = \langle value \rangle \).
Constraint: \(n \geq 0 \).

On entry, \(\text{nzlmx} = \langle value \rangle \).
Constraint: \(\text{nzlmx} \geq 1 \).

On entry, \(\text{nzlumx} = \langle value \rangle \).
Constraint: \(\text{nzlumx} \geq 1 \).

On entry, \(\text{nzumx} = \langle value \rangle \).
Constraint: \(\text{nzumx} \geq 1 \).

NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.
An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

NE_NZLMX_TOO_SMALL
Insufficient \(\text{nzlmx} \).
NE_NZLUMX_TOO_SMALL
Insufficient nzlumx.

NE_NZUMX_TOO_SMALL
Insufficient nzumx.

NE_REAL
On entry, thresh = (value).
Constraint: 0.0 \leq \text{thresh} \leq 1.0.

NE_SINGULAR_MATRIX
The matrix is singular – no factorization possible.

7 Accuracy
The computed factors L and U are the exact factors of a perturbed matrix $A + E$, where
$$|E| \leq c(n)\epsilon|L||U|,$$
c(n) is a modest linear function of n, and ϵ is the machine precision, when partial pivoting is used. If no partial pivoting is used, the factorization accuracy can be considerably worse. A call to nag_superlu_diagnostic_lu (f11mmc) after nag_superlu_lu_factorize (f11mec) can help determine the quality of the factorization.

8 Parallelism and Performance
nag_superlu_lu_factorize (f11mec) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.

nag_superlu_lu_factorize (f11mec) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users’ Note for your implementation for any additional implementation-specific information.

9 Further Comments
The total number of floating-point operations depends on the sparsity pattern of the matrix A.
A call to nag_superlu_lu_factorize (f11mec) may be followed by calls to the functions:
- nag_superlu_solve_lu (f11mfc) to solve $AX = B$ or $A^TX = B$;
- nag_superlu_condition_number_lu (f11mge) to estimate the condition number of A;
- nag_superlu_diagnostic_lu (f11mmc) to estimate the reciprocal pivot growth of the LU factorization.

10 Example
This example computes the LU factorization of the matrix A, where
$$A = \begin{pmatrix}
2.00 & 1.00 & 0 & 0 & 0 \\
0 & 0 & 1.00 & -1.00 & 0 \\
4.00 & 0 & 1.00 & 0 & 1.00 \\
0 & 0 & 0 & 1.00 & 2.00 \\
0 & -2.00 & 0 & 0 & 3.00
\end{pmatrix}.$$
10.1 Program Text

/* nag_superlu_lu_factorize (f11mec) Example Program.
 * Copyright 2014 Numerical Algorithms Group.
 * Mark 8, 2005.
 */

#include <stdio.h>
#include <nag.h>
#include <nagx04.h>
#include <nag_stdlib.h>
#include <nagf11.h>

/* Table of constant values */
int main(void)
{

double flop, thresh;
Integer exit_status = 0, i, n, nnz, nnz1, nnzu, nzlmx, nzlumo, nzumx;
double *a = 0, *lval = 0, *uval = 0;
Integer *icolzp = 0, *il = 0, *iprm = 0, *irowix = 0;
Integer *iu = 0;

NagError fail;
Nag_ColumnPermutationType ispec;
Nag_OrderType order = Nag_ColMajor;
Nag_MatrixType matrix = Nag_GeneralMatrix;
Nag_DiagType diag = Nag_NonUnitDiag;

INIT_FAIL(fail);

/* nag_superlu_lu_factorize (f11mec).
 * LU factorization of real sparse matrix
 */
printf("nag_superlu_lu_factorize (f11mec) Example Program Results\n\n");

/* Skip heading in data file */
#ifdef _WIN32
scanf_s("%[^\n"]");
#else
scanf("%[^\n"]");
#endif

/* Read order of matrix */
#ifdef _WIN32
scanf_s("%"NAG_IFMT"%[^\n"]", &n);
#else
scanf("%"NAG_IFMT"%[^\n"]", &n);
#endif

nnz = icolzp[n] - 1;

/* Allocate memory */
if (!icolzp = NAG_ALLOC(n+1, Integer))
{
 printf("Allocation failure\n");
 exit_status = -1;
 goto END;
}

#ifdef _WIN32
for (i = 1; i <= n + 1; ++i) scanf_s("%"NAG_IFMT"%[^\n"]", &icolzp[i - 1]);
#else
for (i = 1; i <= n + 1; ++i) scanf("%"NAG_IFMT"%[^\n"]", &icolzp[i - 1]);
#endif

nnz = icolzp[n] - 1;

#ifdef _WIN32
for (i = 1; i <= nnz; ++i) scanf_s("%"NAG_IFMT"%[^\n"]", &icolzp[i - 1]);
#else
for (i = 1; i <= nnz; ++i) scanf("%"NAG_IFMT"%[^\n"]", &icolzp[i - 1]);
#endif

/* Allocate memory */
if (!icolzp = NAG_ALLOC(nnz, Integer)) ||
 !(a = NAG_ALLOC(nnz, double)) ||
 !(il = NAG_ALLOC(7*n+8*nnz+4, Integer)) ||
 !(iu = NAG_ALLOC(2*n+8*nnz+1, Integer)) ||
{(uval = NAG_ALLOC(8*nnz, double)) ||
(lval = NAG_ALLOC(8*nnz, double)) ||
(iprm = NAG_ALLOC(7*n, Integer))}
{
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
for (i = 1; i <= nnz; ++i)
#ifdef _WIN32
scanf_s("%lf"NAG_IFMT"%[^\n] ", &a[i - 1], &irowix[i - 1]);
#else
scanf("%lf"NAG_IFMT"%[^\n] ", &a[i - 1], &irowix[i - 1]);
#endif
/* Calculate COLAMD permutation */
ispec = Nag_Sparse_Colamd;
/* nag_superlu_column_permutation (f11mdc).
 * Real sparse nonsymmetric linear systems, setup for
 * nag_superlu_lu_factorize (f11mec)
 */
ag_superlu_column_permutation(ispec, n, icolzp, irowix, iprm, &fail);
if (fail.code != NE_NOERROR)
{
printf(
 "Error from nag_superlu_column_permutation (f11mdc).\n%s\n",
 fail.message);
exit_status = 1;
goto END;
}
/* Factorise */
thresh = 1.;
nzlmx = 8*nnz;
nzlumx = 8*nnz;
nzumx = 8*nnz;
/* nag_superlu_lu_factorize (f11mec), see above. */
ag_superlu_lu_factorize(n, irowix, a, iprm, thresh, nzlmx, &nzlumx, nzumx,
 il, lval, iu, uval, &nnzl, &nnzu, &flop, &fail);
if (fail.code != NE_NOERROR)
{
printf("Error from nag_superlu_lu_factorize (f11mec).\n%s\n",
 fail.message);
exit_status = 1;
goto END;
}
/* Output results */
printf("\n");
printf("Number of nonzeros in factors (excluding unit diagonal)\n");
printf("%8"NAG_IFMT"\n", nnzl + nnzu - n);
/* nag_gen_real_mat_print_comp (x04cbc).
 * Print real general matrix (comprehensive) *
*/
fflush(stdout);
nag_gen_real_mat_print_comp(order, matrix, diag, 1, 10, lval, l, "%6.2f",
 "Factor elements in LVAL", Nag_NoLabels, NULL,
 Nag_NoLabels, NULL, 80, 1, 0, &fail);
if (fail.code != NE_NOERROR)
{
printf("Error from nag_gen_real_mat_print_comp (x04cbc).\n%s\n",
 fail.message);
exit_status = 1;
goto END;
}

printf("\n");
/* nag_gen_real_mat_print_comp (x04cbc), see above. */
fflush(stdout);
nag_gen_real_mat_print_comp(order, matrix, diag, 1, 4, uval, l, "%6.2f",
 "Factor elements in LVAL", Nag_NoLabels, NULL,
 Nag_NoLabels, NULL, 80, 1, 0, &fail);
if (fail.code != NE_NOERROR)
{
 printf("Error from nag_gen_real_mat_print_comp (x04cbc).\n%s\n", fail.message);
 exit_status = 1;
 goto END;
}

END:
NAG_FREE(a);
NAG_FREE(lval);
NAG_FREE(uval);
NAG_FREE(icolzp);
NAG_FREE(il);
NAG_FREE(iprm);
NAG_FREE(irowix);
NAG_FREE(iu);

 return exit_status;
}

10.2 Program Data

nag_superlu_lu_factorize (f11mec) Example Program Data

5n
1
3
5
7
9
12 icolzp(i) i=0..n
2. 1
4. 3
1. 1
-2. 5
1. 2
1. 3
-1. 2
1. 4
1. 3
2. 4
3. 5 a(i), irowix(i) i=0..nnz-1

10.3 Program Results

nag_superlu_lu_factorize (f11mec) Example Program Results

Number of nonzeros in factors (excluding unit diagonal)
14

Factor elements in LVAL
-2.00 -0.50 4.00 0.50 2.00 0.50 -1.00 0.50 1.00 -1.00

Factor elements in LVAL
1.00 3.00 1.00 1.00