1 Purpose

nag_sparse_sym_sol (f11jec) solves a real sparse symmetric system of linear equations, represented in symmetric coordinate storage format, using a conjugate gradient or Lanczos method, without preconditioning, with Jacobi or with SSOR preconditioning.

2 Specification

```c
#include <nag.h>
#include <nagf11.h>

void nag_sparse_sym_sol (Nag_SparseSym_Method method,
             Nag_SparseSym_PrecType precon, Integer n, Integer nnz, const double a[],
             const Integer irow[], const Integer icol[], double omega,
             const double b[], double tol, Integer maxitn, double x[], double *rnorm,
             Integer *itn, Nag_Sparse_Comm *comm, NagError *fail)
```

3 Description

nag_sparse_sym_sol (f11jec) solves a real sparse symmetric linear system of equations:

\[Ax = b, \]

using a preconditioned conjugate gradient method (see Barrett et al. (1994)), or a preconditioned Lanczos method based on the algorithm SYMMLQ (Paige and Saunders (1975)). The conjugate gradient method is more efficient if \(A \) is positive definite, but may fail to converge for indefinite matrices. In this case the Lanczos method should be used instead. For further details see Barrett et al. (1994).

The function allows the following choices for the preconditioner:

- no preconditioning;
- Jacobi preconditioning (see Young (1971));
- symmetric successive-over-relaxation (SSOR) preconditioning (see Young (1971)).

For incomplete Cholesky (IC) preconditioning see nag_sparse_sym_chol_sol (f11jcc).

The matrix \(A \) is represented in symmetric coordinate storage (SCS) format (see the f11 Chapter Introduction) in the arrays \(a, irow \) and \(icol \). The array \(a \) holds the nonzero entries in the lower triangular part of the matrix, while \(irow \) and \(icol \) hold the corresponding row and column indices.

4 References

5 Arguments

1: `method` – Nag_SparseSym_Method

 Input

 On entry: specifies the iterative method to be used.

 `method` = Nag_SparseSym.CG

 The conjugate gradient method is used.

 `method` = Nag_SparseSym.Lanczos

 The Lanczos method (SYMMLQ) is used.

 Constraint: `method` = Nag_SparseSym.CG or Nag_SparseSym.Lanczos.

2: `precon` – Nag_SparseSym_PrecType

 Input

 On entry: specifies the type of preconditioning to be used.

 `precon` = Nag_SparseSym.NoPrec

 No preconditioning is used.

 `precon` = Nag_SparseSym_SSORPrec

 Symmetric successive-over-relaxation is used.

 `precon` = Nag_SparseSym.JacPrec

 Jacobi preconditioning is used.

 Constraint: `precon` = Nag_SparseSym.NoPrec, Nag_SparseSym_SSORPrec or Nag_SparseSym_JacPrec.

3: `n` – Integer

 Input

 On entry: the order of the matrix `A`.

 Constraint: `n` ≥ 1.

4: `nnz` – Integer

 Input

 On entry: the number of nonzero elements in the lower triangular part of the matrix `A`.

 Constraint: 1 ≤ `nnz` ≤ `n` × (n + 1)/2.

5: `a[nnz]` – const double

 Input

 On entry: the nonzero elements of the lower triangular part of the matrix `A`, ordered by increasing row index, and by increasing column index within each row. Multiple entries for the same row and column indices are not permitted. The function `nag_sparse_sym_sort(f11zbc)` may be used to order the elements in this way.

6: `irow[nnz]` – const Integer
7: `icol[nnz]` – const Integer

 Input

 On entry: the row and column indices of the nonzero elements supplied in `A`.

 Constraints:

 `irow` and `icol` must satisfy the following constraints (which may be imposed by a call to `nag_sparse_sym_sort(f11zbc)`);

 1 ≤ `irow[i]` ≤ `n` and 1 ≤ `icol[i]` ≤ `irow[i]`, for `i = 0, 1, ..., nnz - 1`;

 `irow[i - 1]` < `irow[i]` or `irow[i - 1] = irow[i]` and `icol[i - 1] < icol[i]`, for `i = 1, 2, ..., nnz - 1`.

8: `omega` – double

 Input

 On entry: if `precon` = Nag_SparseSym_SSORPrec, `omega` is the relaxation argument ω to be used in the SSOR method. Otherwise `omega` need not be initialized.

 Constraint: 0.0 ≤ `omega` ≤ 2.0.
9: b[n] – const double
 On entry: the right-hand side vector b.

10: tol – double
 On entry: the required tolerance. Let x_k denote the approximate solution at iteration k, and r_k the corresponding residual. The algorithm is considered to have converged at iteration k if:
 \[\|r_k\|_\infty \leq \tau \times (\|b\|_\infty + \|A\|_\infty \|x_k\|_\infty). \]
 If \(tol \leq 0.0 \), \(\tau = \max(\sqrt{\epsilon}, \sqrt{n}, \epsilon) \) is used, where \(\epsilon \) is the machine precision. Otherwise \(\tau = \max(tol, 10\epsilon, \sqrt{n}, \epsilon) \) is used.
 Constraint: \(tol < 1.0 \).

11: maxitn – Integer
 On entry: the maximum number of iterations allowed.
 Constraint: \(maxitn \geq 1 \).

12: x[n] – double
 On entry: an initial approximation of the solution vector x.
 On exit: an improved approximation to the solution vector x.

13: rnorm – double *
 On exit: the final value of the residual norm \(\|r_k\|_\infty \), where k is the output value of itn.

14: itn – Integer *
 On exit: the number of iterations carried out.

15: comm – Nag_Sparse_Comm *
 On entry/exit: a pointer to a structure of type Nag_Sparse_Comm whose members are used by the iterative solver.

16: fail – NagError *
 The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ACC_LIMIT
 The required accuracy could not be obtained. However, a reasonable accuracy has been obtained and further iterations cannot improve the result.

NE_ALLOC_FAIL
 Dynamic memory allocation failed.

NE_BAD_PARAM
 On entry, argument method had an illegal value.
 On entry, argument precon had an illegal value.

NE_COEFF_NOT_POS_DEF
 The matrix of coefficients appears not to be positive definite (conjugate gradient method only).
NE_INT_2

On entry, \(\text{nnz} = \langle \text{value} \rangle, \text{n} = \langle \text{value} \rangle. \)

Constraint: \(1 \leq \text{nnz} \leq \text{n} \times (\text{n} + 1)/2. \)

NE_INT_ARG_LT

On entry, \(\text{maxitn} = \langle \text{value} \rangle. \)

Constraint: \(\text{maxitn} \geq 1. \)

On entry, \(\text{n} = \langle \text{value} \rangle. \)

Constraint: \(\text{n} \geq 1. \)

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

NE_NOT_REQ_ACC

The required accuracy has not been obtained in \(\text{maxitn} \) iterations.

NE_PRECOND_NOT_POS_DEF

The preconditioner appears not to be positive definite.

NE_REAL

On entry, \(\text{omega} = \langle \text{value} \rangle. \)

Constraint: \(0 \leq \text{omega} \leq 2.0. \)

NE_REAL_ARG_GE

On entry, \(\text{tol} \) must not be greater than or equal to 1.0: \(\text{tol} = \langle \text{value} \rangle. \)

NE_SYMM_MATRIX_DUP

A nonzero element has been supplied which does not lie in the lower triangular part of the matrix \(A \), is out of order, or has duplicate row and column indices, i.e., one or more of the following constraints has been violated:

1. \(1 \leq \text{irow}[i] \leq \text{n} \) and \(1 \leq \text{icol}[i] \leq \text{irow}[i] \), for \(i = 0, 1, \ldots, \text{nnz} - 1 \)
2. \(\text{irow}[i - 1] < \text{irow}[i] \), or \(\text{irow}[i - 1] = \text{irow}[i] \) and \(\text{icol}[i - 1] < \text{icol}[i] \), for \(i = 1, 2, \ldots, \text{nnz} - 1 \).

Call nag_sparse_sym_sort (f11zbc) to reorder and sum or remove duplicates.

NE_ZERO_DIAGONAL_ELEM

The matrix \(A \) has a zero diagonal element. Jacobi and SSOR preconditioners are not appropriate for this problem.

7 Accuracy

On successful termination, the final residual \(r_k = b - Ax_k \), where \(k = \text{itn} \), satisfies the termination criterion

\[
\|r_k\|_\infty \leq \tau \times (\|b\|_\infty + \|A\|_\infty \|x_k\|_\infty).
\]

The value of the final residual norm is returned in \(\text{rnorm} \).

8 Parallelism and Performance

Not applicable.
9 Further Comments

The time taken by nag_sparse_sym_sol (f11jec) for each iteration is roughly proportional to \(nnz \). One iteration with the Lanczos method (SYMMLQ) requires a slightly larger number of operations than one iteration with the conjugate gradient method.

The number of iterations required to achieve a prescribed accuracy cannot be easily determined a priori, as it can depend dramatically on the conditioning and spectrum of the preconditioned matrix of the coefficients \(A = M^{-1}A \).

10 Example

This example program solves a symmetric positive definite system of equations using the conjugate gradient method, with SSOR preconditioning.

10.1 Program Text

```c
/* nag_sparse_sym_sol (f11jec) Example Program. */
/* Copyright 2014 Numerical Algorithms Group. */
/* Mark 5, 1998. */

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nag_string.h>
#include <nagf11.h>

int main(void)
{

double *a = 0, *b = 0, *x = 0;
double omega;
double rnorm;
double tol;
Integer exit_status = 0;
Integer *icol, *irow;
Integer i, n, maxitn, itn, nnz;
char nag_enum_arg[40];
Nag_SparseSym_Method method;
Nag_SparseSym_PrecType precon;
Nag_Sparse_Comm comm;
NagError fail;

INIT_FAIL(fail);

printf("nag_sparse_sym_sol (f11jec) Example Program Results\n");

/******** Skip heading in data file */
#ifdef _WIN32
scanf_s(" %*[\n]");
#else
scanf(" %*[\n]");
#endif

#ifdef _WIN32
scanf_s("%"NAG_IFMT"%*[\n]", &n);
#else
scanf("%"NAG_IFMT"%*[\n]", &n);
#endif
#ifdef _WIN32
scanf_s("%"NAG_IFMT"%*[\n]", &nnz);
#else
scanf("%"NAG_IFMT"%*[\n]", &nnz);
#endif
```
```c
/* nag_enum_name_to_value (x04nac). */
method = (Nag_SparseSym_Method) nag_enum_name_to_value(nag_enum_arg);
precon = (Nag_SparseSym_PrecType) nag_enum_name_to_value(nag_enum_arg);
omega = (Nag_SparseSym_Omega) nag_enum_name_to_value(nag_enum_arg);
tol = (Nag_SparseSym_Tol) nag_enum_name_to_value(nag_enum_arg);
maxitn = (Nag_SparseSym_MaxIt) nag_enum_name_to_value(nag_enum_arg);

/* Allocate memory */
x = NAG_ALLOC(n, double);
b = NAG_ALLOC(n, double);
a = NAG_ALLOC(nnz, double);
irow = NAG_ALLOC(nnz, Integer);
icol = NAG_ALLOC(nnz, Integer);
if (!irow || !icol || !a || !x || !b)
{
    printf("Allocation failure\n");
    exit_status = 1;
    goto END;
}

/* Read the matrix a */
for (i = 1; i <= nnz; ++i)
{
    scanf("%lf"NAG_IFMT"%lf持久", &a[i-1], &irow[i-1], &icol[i-1]);
}

/* Read right-hand side vector b and initial approximate solution x */
for (i = 1; i <= n; ++i)
{
    scanf("%lf", &b[i-1]);
}
```

Solve Ax = b

/* nag_sparse_sym_sol (f11jec).
 * Solver with Jacobi, SSOR, or no preconditioning
 * (symmetric)
 */

nag_sparse_sym_sol(method, precon, n, nnz, a, irow, icol, omega, b, tol,
 maxitn, x, &rnorm, &itn, &comm, &fail);

printf(" %s%10"]NAG_IFMT”%s
», "Converged in", itn, " iterations");
printf(" %s%16.3e
", "Final residual norm =", rnorm);

END:
NAG_FREE(irow);
NAG_FREE(icol);
NAG_FREE(a);
NAG_FREE(x);
NAG_FREE(b);

return exit_status;
}

10.2 Program Data

nag_sparse_sym_sol (f11jec) Example Program Data

7
16
Nag_SparseSym_CG Nag_SparseSym_SSORPrec
1.1 omega
1.0E-6 100 tol, maxitn
4. 1 1
1. 2 1
5. 2 2
2. 3 3
2. 4 2
3. 4 4
-1. 5 1
1. 5 4
4. 5 5
1. 6 2
-2. 6 5
3. 6 6
2. 7 1
-1. 7 2
-2. 7 3
5. 7 7 a[i-1], irow[i-1], icol[i-1], i=1,...,nnz
15. 18 -8 21.
11. 10 29. b[i-1], i=1,...,n
0. 0. 0. 0.
0. 0. 0. x[i-1], i=1,...,n
10.3 Program Results

nag_sparse_sym_sol (f11jec) Example Program Results
Converged in 6 iterations
Final residual norm = 5.026e-06
1.0000e-00
2.0000e+00
3.0000e+00
4.0000e+00
5.0000e+00
6.0000e+00
7.0000e+00