NAG Library Function Document
nag_sparse_sym_chol_sol (f11jcc)

1 Purpose
nag_sparse_sym_chol_sol (f11jcc) solves a real sparse symmetric system of linear equations, represented in symmetric coordinate storage format, using a conjugate gradient or Lanczos method, with incomplete Cholesky preconditioning.

2 Specification

```c
#include <nag.h>
#include <nagf11.h>

void nag_sparse_sym_chol_sol (Nag_SparseSym_Method method, Integer n,
    Integer nnz, const double a[], Integer la, const Integer irow[],
    const Integer icol[], const Integer ipiv[], const Integer istr[],
    const double b[], double tol, Integer maxitn, double x[],
    double *rnorm, Integer *itn, Nag_Sparse_Comm *comm, NagError *fail)
```

3 Description
nag_sparse_sym_chol_sol (f11jcc) solves a real sparse symmetric linear system of equations:

\[Ax = b, \]

using a preconditioned conjugate gradient method (Meijerink and Van der Vorst (1977)), or a preconditioned Lanczos method based on the algorithm SYMMLQ (Paige and Saunders (1975)). The conjugate gradient method is more efficient if \(A \) is positive definite, but may fail to converge for indefinite matrices. In this case the Lanczos method should be used instead. For further details see Barrett et al. (1994).

nag_sparse_sym_chol_sol (f11jcc) uses the incomplete Cholesky factorization determined by nag_sparse_sym_chol_fac (f11jac) as the preconditioning matrix. A call to nag_sparse_sym_chol_sol (f11jcc) must always be preceded by a call to nag_sparse_sym_chol_fac (f11jac). Alternative preconditioners for the same storage scheme are available by calling nag_sparse_sym_sol (f11jec).

The matrix \(A \), and the preconditioning matrix \(M \), are represented in symmetric coordinate storage (SCS) format (see the f11 Chapter Introduction) in the arrays \(a \), \(irow \) and \(icol \), as returned from nag_sparse_sym_chol_fac (f11jac). The array \(a \) holds the nonzero entries in the lower triangular parts of these matrices, while \(irow \) and \(icol \) hold the corresponding row and column indices.

4 References

5 Arguments

1: **method** – Nag_SparseSym_Method

Input

On entry: specifies the iterative method to be used.

method = Nag_SparseSym_CG

The conjugate gradient method is used.

method = Nag_SparseSym_Lanczos

The Lanczos method, SYMMLQ is used.

Constraint: **method** = Nag_SparseSym_CG or Nag_SparseSym_Lanczos.

2: **n** – Integer

Input

On entry: the order of the matrix A. This *must* be the same value as was supplied in the preceding call to nag_sparse_sym_chol_fac (f11jac).

Constraint: $n \geq 1$.

3: **nnz** – Integer

Input

On entry: the number of nonzero elements in the lower triangular part of the matrix A. This *must* be the same value as was supplied in the preceding call to nag_sparse_sym_chol_fac (f11jac).

Constraint: $1 \leq nnz \leq n \times (n+1)/2$.

4: **a[la]** – const double

Input

On entry: the values returned in array **a** by a previous call to nag_sparse_sym_chol_fac (f11jac).

5: **la** – Integer

Input

On entry: the second dimension of the arrays **a, irow** and **icol**. This *must* be the same value as returned by a previous call to nag_sparse_sym_chol_fac (f11jac).

Constraint: $la \geq 2 \times nnz$.

6: **irow[la]** – const Integer

7: **icol[la]** – const Integer

8: **ipiv[n]** – const Integer

9: **istr[n + 1]** – const Integer

Input

On entry: the values returned in the arrays **irow, icol, ipiv** and **istr** by a previous call to nag_sparse_sym_chol_fac (f11jac).

10: **b[n]** – const double

Input

On entry: the right-hand side vector **b**.

11: **tol** – double

Input

On entry: the required tolerance. Let x_k denote the approximate solution at iteration k, and r_k the corresponding residual. The algorithm is considered to have converged at iteration k if:

$$\|r_k\|_\infty \leq \tau \times (\|b\|_\infty + \|A\|_\infty \|x_k\|_\infty).$$

If $tol \leq 0.0$, $\tau = \max(\sqrt{\epsilon}, \sqrt{n} \epsilon)$ is used, where ϵ is the *machine precision*. Otherwise $\tau = \max(tol, 10\epsilon, \sqrt{n} \epsilon)$ is used.

Constraint: $tol < 1.0$.
12: **maxitn** – Integer

 Input

 On entry: the maximum number of iterations allowed.

 Constraint: \(\text{maxitn} \geq 1 \).

13: **\(x[n] \)** – double

 Input/Output

 On entry: an initial approximation to the solution vector \(x \).

 On exit: an improved approximation to the solution vector \(x \).

14: **rnorm** – double *

 Output

 On exit: the final value of the residual norm \(\| r_k \|_\infty \), where \(k \) is the output value of \(\text{itn} \).

15: **\(\text{itn} \)** – Integer *

 Output

 On exit: the number of iterations carried out.

16: **\(\text{comm} \)** – Nag_Sparse_Comm *

 Input/Output

 On entry/exit: a pointer to a structure of type Nag_Sparse_Comm whose members are used by the iterative solver.

17: **\(\text{fail} \)** – NagError *

 Input/Output

 The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_2_INT_ARG_LT

On entry, \(\text{la} = \langle \text{value} \rangle \) while \(\text{nnz} = \langle \text{value} \rangle \). These arguments must satisfy \(\text{la} \geq 2 \times \text{nnz} \).

NE_ACC_LIMIT

The required accuracy could not be obtained. However, a reasonable accuracy has been obtained and further iterations cannot improve the result.

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument \(\text{method} \) had an illegal value.

NE_COEFF_NOT_POS_DEF

The matrix of coefficients appears not to be positive definite.

NE_INT_2

On entry, \(\text{nnz} = \langle \text{value} \rangle \), \(n = \langle \text{value} \rangle \).

Constraint: \(1 \leq \text{nnz} \leq n \times (n + 1)/2 \).

NE_INT_ARG_LT

On entry, \(\text{maxitn} = \langle \text{value} \rangle \).

Constraint: \(\text{maxitn} \geq 1 \).

On entry, \(n = \langle \text{value} \rangle \).

Constraint: \(n \geq 1 \).
NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the

call is correct then please contact NAG for assistance.

NE_INVALID_SCS

The SCS representation of the matrix A is invalid. Check that the call to

nag_sparse_sym_chol_sol (f11jcc) has been preceded by a valid call to nag_sparse_sym_chol_fac

(f11jac), and that the arrays a, $irow$ and $icol$ have not been corrupted between the two calls.

NE_INVALID_SCS_PRECOND

The SCS representation of the preconditioning matrix M is invalid. Check that the call to

nag_sparse_sym_chol_sol (f11jcc) has been preceded by a valid call to nag_sparse_sym_chol_fac

(f11jac), and that the arrays a, $irow$, $icol$, $ipiv$ and $istr$ have not been corrupted between the two

calls.

NE_NOT_REQ_ACC

The required accuracy has not been obtained in maxitn iterations.

NE_PRECOND_NOT_POS_DEF

The preconditioner appears not to be positive definite.

NE_REAL_ARG_GE

On entry, tol must not be greater than or equal to 1.0: $\text{tol} = \langle \text{value} \rangle$.

7 Accuracy

On successful termination, the final residual $r_k = b - Ax_k$, where $k = \text{itn}$, satisfies the termination
criterion

$$||r_k||_\infty \leq \tau \times (||b||_\infty + ||A||_\infty ||x_k||_\infty).$$

The value of the final residual norm is returned in rnorm.

8 Parallelism and Performance

Not applicable.

9 Further Comments

The time taken by nag_sparse_sym_chol_sol (f11jcc) for each iteration is roughly proportional to the
value of nnzc returned from the preceding call to nag_sparse_sym_chol_fac (f11jac). One iteration with
the Lanczos method (SYMMLQ) requires a slightly larger number of operations than one iteration with
the conjugate gradient method.

The number of iterations required to achieve a prescribed accuracy cannot be easily determined a priori,
as it can depend dramatically on the conditioning and spectrum of the preconditioned matrix of the
coefficients $A = M^{-1}A$.

Some illustrations of the application of nag_sparse_sym_chol_sol (f11jcc) to linear systems arising from
the discretization of two-dimensional elliptic partial differential equations, and to random-valued
randomly structured symmetric positive definite linear systems, can be found in Salvini and Shaw
10 Example

This example program solves a symmetric positive definite system of equations using the conjugate gradient method, with incomplete Cholesky preconditioning.

10.1 Program Text

```c
/* nag_sparse_sym_chol_sol (f11jcc) Example Program.  
 * Copyright 2014 Numerical Algorithms Group.  
 */

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nag_string.h>
#include <nagf11.h>

int main(void)
{

double dtol;
double *a = 0, *b = 0;
double *x = 0;
double rnorm, dscale;
double tol;
Integer exit_status = 0;
Integer *icol = 0;
Integer *ipiv = 0, nnzc, *irow = 0, *istr = 0;
Integer i;
Integer n;
Integer lfill, npivm;
Integer maxitn;
Integer itn;
Integer nnz;
Integer num;
char nag_enum_arg[40];
Nag_SparseSym_Method method;
Nag_SparseSym_Piv pstrat;
Nag_SparseSym_Fact mic;
Nag_Sparse_Comm comm;
NagError fail;

INIT_FAIL(fail);

printf("nag_sparse_sym_chol_sol (f11jcc) Example Program Results\n");

/* Skip heading in data file */
#endif
scanf("%*[\n")
else
scanf("%*[\n")
#endif
scanf("%*[\n")
```

Mark 25
```c
/* Read the matrix a */
/* Allocate memory */
n = 2 * nnz;
num = NAG_ALLOC(n, Integer);
irow = NAG_ALLOC(num, Integer);
icol = NAG_ALLOC(num, Integer);
a = NAG_ALLOC(num, double);
b = NAG_ALLOC(n, double);
x = NAG_ALLOC(n, double);
istr = NAG_ALLOC(n+1, Integer);
ipiv = NAG_ALLOC(num, Integer);

if (!irow || !icol || !a || !x || !istr || !ipiv)
{
    printf("Allocation failure\n");
    return EXIT_FAILURE;
}

/* Read right-hand side vector b and initial approximate solution x */

for (i = 1; i <= n; ++i)
{
    scanf("%lf", &b[i-1]);
}
```
#ifdef _WIN32
 scanf_s("%lf", &x[i-1]);
#else
 scanf("%lf", &x[i-1]);
#endif
#endif
/* Calculate incomplete Cholesky factorization */
/* nag_sparse_sym_chol_fac (f11jac).
 * Incomplete Cholesky factorization (symmetric)
 */
nag_sparse_sym_chol_fac(n, nnz, &a, &num, &irow, &icol, lfill, dtol, mic,
 dscale, pstrat, ipiv, istr, &nnzc, &npivm, &comm, &fail);
if (fail.code != NE_NOERROR)
 {
 printf("Error from nag_sparse_sym_chol_fac (f11jac).\n%s\n", fail.message);
 exit_status = 1;
 goto END;
 }
/* Solve Ax = b */
/* nag_sparse_sym_chol_sol (f11jcc).
 * Solver with incomplete Cholesky preconditioning
 * (symmetric)
 */
nag_sparse_sym_chol_sol(method, n, nnz, a, num, irow, icol, ipiv, istr, b,
 tol, maxitn, x, &rnorm, &itn, &comm, &fail);
if (fail.code != NE_NOERROR)
 {
 printf("Error from nag_sparse_sym_chol_sol (f11jcc).\n%s\n", fail.message);
 exit_status = 1;
 goto END;
 }
printf(" %s%10NAG_IFMT"%s
", "Converged in", itn, " iterations");
printf(" %s%16.3e
", "Final residual norm =", rnorm);
/* Output x */
for (i = 1; i <= n; ++i)
 printf(" %16.4e
", x[i-1]);
END:
NAG_FREE(irow);
NAG_FREE(icol);
NAG_FREE(a);
NAG_FREE(b);
NAG_FREE(x);
NAG_FREE(ipiv);
NAG_FREE(istr);
return exit_status;
}
10.2 Program Data

nag_sparse_sym_chol_sol (f11jcc) Example Program Data

7
16 nnz
1 0.0 lfill, dtol
Nag_SparseSym_CG method
Nag_SparseSym_UnModFact 0.0 mic dscale
Nag_SparseSym_MarkPiv pstrat
1.0e-6 100 tol, maxitn
4. 1 1
2. 2 1
5. 2 2
2. 3 3
2. 4 2
3. 4 4
-1. 5 1
1. 5 4
1. 5 5
1. 6 2
-2. 6 5
3. 6 6
2. 7 1
-1. 7 2
-2. 7 3
5. 7 7 a[i-1], irow[i-1], icol[i-1], i=1,...,nnz
15. 18. -8. 21.
11. 10. 29. b[i-1], i=1,...,n
0. 0. 0. 0.
0. 0. 0. x[i-1], i=1,...,n

10.3 Program Results

nag_sparse_sym_chol_sol (f11jcc) Example Program Results

Converged in 1 iterations
Final residual norm = 0.000e+00

1.000e+00
2.0000e+00
3.0000e+00
4.0000e+00
5.0000e+00
6.0000e+00
7.0000e+00