1 Purpose

nag_zggqrf (f08zsc) computes a generalized QR factorization of a complex matrix pair \((A, B)\), where \(A\) is an \(n\) by \(m\) matrix and \(B\) is an \(n\) by \(p\) matrix.

2 Specification

```c
#include <nag.h>
#include <nagf08.h>

void nag_zggqrf (Nag_OrderType order, Integer n, Integer m, Integer p,
                 Complex a[], Integer pda, Complex taua[], Complex b[], Integer pdb,
                 Complex taub[], NagError *fail)
```

3 Description

nag_zggqrf (f08zsc) forms the generalized QR factorization of an \(n\) by \(m\) matrix \(A\) and an \(n\) by \(p\) matrix \(B\)

\[
A = QR, \quad B = QTZ,
\]

where \(Q\) is an \(n\) by \(n\) unitary matrix, \(Z\) is a \(p\) by \(p\) unitary matrix and \(R\) and \(T\) are of the form

\[
R = \begin{cases}
 m \begin{pmatrix} R_{11} \\ 0 \end{pmatrix}, & \text{if } n \geq m; \\
 n \begin{pmatrix} R_{11} & R_{12} \\ R_{12} & R_{22} \end{pmatrix}, & \text{if } n < m,
\end{cases}
\]

with \(R_{11}\) upper triangular,

\[
T = \begin{cases}
 n \begin{pmatrix} n - p & n \\ 0 & T_{12} \end{pmatrix}, & \text{if } n \leq p; \\
 n \begin{pmatrix} p & T_{11} \\ p & T_{21} \end{pmatrix}, & \text{if } n > p,
\end{cases}
\]

with \(T_{12}\) or \(T_{21}\) upper triangular.

In particular, if \(B\) is square and nonsingular, the generalized QR factorization of \(A\) and \(B\) implicitly gives the QR factorization of \(B^{-1}A\) as

\[
B^{-1}A = Z^H (T^{-1} R).
\]

4 References

Arguments

1. **order** – Nag_OrderType

 Input

 On entry: the **order** argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by **order** = Nag_RowMajor. See Section 3.2.1.3 in the Essential Introduction for a more detailed explanation of the use of this argument.

 Constraint: **order** = Nag_RowMajor or Nag_ColMajor.

2. **n** – Integer

 Input

 On entry: \(n \), the number of rows of the matrices \(A \) and \(B \).

 Constraint: \(n \geq 0 \).

3. **m** – Integer

 Input

 On entry: \(m \), the number of columns of the matrix \(A \).

 Constraint: \(m \geq 0 \).

4. **p** – Integer

 Input

 On entry: \(p \), the number of columns of the matrix \(B \).

 Constraint: \(p \geq 0 \).

5. **a[dim]** – Complex

 Input/Output

 Note: the dimension, \(dim \), of the array \(a \) must be at least

 \[
 \max(1, \text{pda} \times m) \quad \text{when} \quad \text{order} = \text{Nag.ColMajor};
 \]

 \[
 \max(1, n \times \text{pda}) \quad \text{when} \quad \text{order} = \text{Nag.RowMajor}.
 \]

 The \((i,j)\)th element of the matrix \(A \) is stored in

 \[
 a[(j-1) \times \text{pda} + i - 1] \quad \text{when} \quad \text{order} = \text{Nag.ColMajor};
 \]

 \[
 a[(i-1) \times \text{pda} + j - 1] \quad \text{when} \quad \text{order} = \text{Nag.RowMajor}.
 \]

 On entry: the \(n \) by \(m \) matrix \(A \).

 On exit: the elements on and above the diagonal of the array contain the \(\min(n, m) \) by \(m \) upper trapezoidal matrix \(R \) (\(R \) is upper triangular if \(n \geq m \)); the elements below the diagonal, with the array \(\text{taua} \), represent the unitary matrix \(Q \) as a product of \(\min(n, m) \) elementary reflectors (see Section 3.3.6 in the f08 Chapter Introduction).

6. **pda** – Integer

 Input

 On entry: the stride separating row or column elements (depending on the value of **order**) in the array \(a \).

 Constraints:

 \[
 \text{if} \quad \text{order} = \text{Nag.ColMajor}, \quad \text{pda} \geq \max(1, n);
 \]

 \[
 \text{if} \quad \text{order} = \text{Nag.RowMajor}, \quad \text{pda} \geq \max(1, m).
 \]
7: \(\text{tau}[\min(n, m)] \) – Complex

\textit{Output}

\textit{On exit}: the scalar factors of the elementary reflectors which represent the unitary matrix \(Q \).

8: \(b[\text{dim}] \) – Complex

\textit{Input/Output}

\textit{Note}: the dimension, \(\text{dim} \), of the array \(b \) must be at least

\[
\max(1, \text{pdb} \times p) \text{ when } \text{order} = \text{NagColMajor} ; \\
\max(1, n \times \text{pdb}) \text{ when } \text{order} = \text{NagRowMajor}.
\]

Where \(B(i, j) \) appears in this document, it refers to the array element

\[
b[(j - 1) \times \text{pdb} + i - 1] \text{ when } \text{order} = \text{NagColMajor} ; \\
b[(i - 1) \times \text{pdb} + j - 1] \text{ when } \text{order} = \text{NagRowMajor}.
\]

\textit{On entry}: the \(n \) by \(p \) matrix \(B \).

\textit{On exit}: if \(n \leq p \), the upper triangle of the subarray \(B(1 : n, p - n + 1 : p) \) contains the \(n \) by \(n \) upper triangular matrix \(T_{12} \).

If \(n > p \), the elements on and above the \((n - p) \)th subdiagonal contain the \(n \) by \(p \) upper trapezoidal matrix \(T \); the remaining elements, with the array \(\text{taub} \), represent the unitary matrix \(Z \) as a product of elementary reflectors (see Section 3.3.6 in the f08 Chapter Introduction).

9: \(\text{pdb} \) – Integer

\textit{Input}

\textit{On entry}: the stride separating row or column elements (depending on the value of \(\text{order} \)) in the array \(b \).

\textit{Constraints}:

\[
\begin{align*}
\text{if } \text{order} = \text{NagColMajor}, & \quad \text{pdb} \geq \max(1, n) ; \\
\text{if } \text{order} = \text{NagRowMajor}, & \quad \text{pdb} \geq \max(1, p).
\end{align*}
\]

10: \(\text{taub}[\min(n, p)] \) – Complex

\textit{Output}

\textit{On exit}: the scalar factors of the elementary reflectors which represent the unitary matrix \(Z \).

11: \(\text{fail} \) – NagError *

\textit{Input/Output}

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 \hspace{1em} \textbf{Error Indicators and Warnings}

\textbf{NE_ALLOC_FAIL}

Dynamic memory allocation failed.

See Section 3.2.1.2 in the Essential Introduction for further information.

\textbf{NE_BAD_PARAM}

On entry, argument \(\langle \text{value} \rangle \) had an illegal value.

\textbf{NE_INT}

On entry, \(m = \langle \text{value} \rangle \).

Constraint: \(m \geq 0 \).

On entry, \(n = \langle \text{value} \rangle \).

Constraint: \(n \geq 0 \).

On entry, \(p = \langle \text{value} \rangle \).

Constraint: \(p \geq 0 \).

On entry, \(\text{pda} = \langle \text{value} \rangle \).

Constraint: \(\text{pda} > 0 \).
On entry, \(\text{pdb} = \langle \text{value} \rangle \).
Constraint: \(\text{pdb} > 0 \).

NE_INT_2

On entry, \(\text{pda} = \langle \text{value} \rangle \) and \(\text{m} = \langle \text{value} \rangle \).
Constraint: \(\text{pda} \geq \max(1, \text{m}) \).

On entry, \(\text{pdb} = \langle \text{value} \rangle \) and \(\text{n} = \langle \text{value} \rangle \).
Constraint: \(\text{pdb} \geq \max(1, \text{n}) \).

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

7 **Accuracy**

The computed generalized \(QR \) factorization is the exact factorization for nearby matrices \((A + E)\) and \((B + F)\), where
\[
\|E\|_2 = O(\epsilon\|A\|_2) \quad \text{and} \quad \|F\|_2 = O(\epsilon\|B\|_2),
\]
and \(\epsilon \) is the *machine precision*.

8 **Parallelism and Performance**

\text{nag_zggqrf} (f08zsc) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.

\text{nag_zggqrf} (f08zsc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users’ Note for your implementation for any additional implementation-specific information.

9 **Further Comments**

The unitary matrices \(Q \) and \(Z \) may be formed explicitly by calls to \text{nag_zungqr} (f08atc) and \text{nag_zungrq} (f08cwc) respectively. \text{nag_zunmqr} (f08auc) may be used to multiply \(Q \) by another matrix and \text{nag_zunmrq} (f08cxc) may be used to multiply \(Z \) by another matrix.

The real analogue of this function is \text{nag_dggqrf} (f08zec).
10 Example

This example solves the general Gauss–Markov linear model problem

$$\min_{x} \|y\|_2 \quad \text{subject to} \quad d = Ax + By$$

where

$$A = \begin{pmatrix} 0.96 - 0.81i & -0.03 + 0.96i & -0.91 + 2.06i \\ -0.98 + 1.98i & -1.20 + 0.19i & -0.66 + 0.42i \\ 0.62 - 0.46i & 1.01 + 0.02i & 0.63 - 0.17i \\ 1.08 - 0.28i & 0.20 - 0.12i & -0.07 + 1.23i \end{pmatrix},$$

$$B = \begin{pmatrix} 0.5 - 1.0i & 0 & 0 & 0 \\ 0 & 1.0 - 2.0i & 0 & 0 \\ 0 & 0 & 2.0 - 3.0i & 0 \\ 0 & 0 & 0 & 5.0 - 4.0i \end{pmatrix},$$

and

$$d = \begin{pmatrix} 6.00 - 0.40i \\ -5.27 + 0.90i \\ 2.72 - 2.13i \\ -1.30 - 2.80i \end{pmatrix}.$$

The solution is obtained by first computing a generalized QR factorization of the matrix pair (A, B). The example illustrates the general solution process, although the above data corresponds to a simple weighted least squares problem.

10.1 Program Text

/* nag_zggqr2 (f08zsc) Example Program. */
/* Copyright 2014 Numerical Algorithms Group. */
/* Mark 23, 2011. */

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <naga02.h>
#include <nagf07.h>
#include <nagf08.h>
#include <nagf16.h>

int main(void)
{
 /* Scalars */
 Complex alpha, beta;
 Complex zero = { 0.0, 0.0 };
 double rnorm;
 Integer i, j, m, n, nm, p, pda, pdb, pdd, pnm, zrow;
 Integer exit_status = 0;

 /* Arrays */
 Complex *a = 0, *b = 0, *d = 0, *taua = 0, *taub = 0, *y = 0;

 /* Nag Types */
 NagError fail;
 Nag_OrderType order;

 #ifdef NAG_COLUMN_MAJOR
 #define A(I, J) a[(J-1)*pda + I-1]
 #define B(I, J) b[(J-1)*pdb + I-1]
 order = Nag_ColMajor;
 #endif
}

Mark 25
#else
#define A(I, J) a[(I-1)*pda + J - 1]
#define B(I, J) b[(I-1)*pdb + J - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);

printf("nag_zggqrf (f08zsc) Example Program Results\n\n");

/* Skip heading in data file */
#else _WIN32
scanf_s("%*[\n]");
#else
scanf("%*[\n]");
#endif
#endif _WIN32
scanf_s("%"NAG_IFMT"%"NAG_IFMT"%"NAG_IFMT"%*[\n]", &n, &m, &p);
#else
scanf("%"NAG_IFMT"%"NAG_IFMT"%"NAG_IFMT"%*[\n]", &n, &m, &p);
#endif
if (n<0 || m<0 || p<0)
{
 printf("Invalid n, m or p\n");
 exit_status = 1;
 goto END;
}
#endif NAG_COLUMN_MAJOR
pda = n;
pdb = n;
pdd = n;
#else
pda = m;
pdb = p;
pdd = 1;
#endif

/* Allocate memory */
if (!(a = NAG_ALLOC(n*m, Complex)) ||
 !(b = NAG_ALLOC(n*p, Complex)) ||
 !(d = NAG_ALLOC(n, Complex)) ||
 !(taua = NAG_ALLOC(MIN(n, m), Complex)) ||
 !(taub = NAG_ALLOC(MIN(n, p), Complex)) ||
 !(y = NAG_ALLOC(p, Complex)))
{
 printf("Allocation failure\n");
 exit_status = -1;
 goto END;
}

/* Read A, B and d from data file */
for (i = 1; i <= n; ++i)
 for (j = 1; j <= m; ++j)
#ifdef _WIN32
 scanf_s(" (%lf , %lf)", &A(i, j).re, &A(i, j).im);
#else
 scanf(" (%lf , %lf)", &A(i, j).re, &A(i, j).im);
#endif
#ifdef _WIN32
 scanf_s("%*[\n]");
#else
 scanf("%*[\n]");
#endif
#endif _WIN32
scanf_s("%*[\n]");
#else
scanf("%*[\n]");
#endif
for (i = 1; i <= n; ++i)
 for (j = 1; j <= p; ++j)
#ifdef _WIN32
 scanf_s(" (%lf , %lf)", &B(i, j).re, &B(i, j).im);
#else
 scanf(" (%lf , %lf)", &B(i, j).re, &B(i, j).im);
#endif
#endif

f08zsc.6 Mark 25

NAG Library Manual

f08zsc

NAG Library Manual
/* Compute the generalized QR factorization of (A,B) as
 A = Q*(R), B = Q*(T11 T12)*Z
 (0) (0 T22)
 using nag_dggqr (f08zec). */

nag_zggqrf(order, n, m, p, a, pda, taua, b, pdb, taub, &fail);
if (fail.code != NE_NOERROR)
{
 printf("Error from nag_zggqrf (f08zsc).\n%s\n", fail.message);
 exit_status = 1;
 goto END;
}

/* Solve weighted least-squares problem for case n > m */
if (n <= m) goto END;

mm = n - m;
npn = p - mm;

/* Multiply Q^H through d = Ax + By to get */

* c1 = Q^H*d = (R)*x + (T11 T12)*Z*(y1)
* (c2) (0) (0 T22) (y2)

* Compute C using nag_zunmqr (f08auc). */

nag_zunmqr(order, Nag_LeftSide, Nag_ConjTrans, n, 1, m, a, pda, taua, d, pdd, &fail);
if (fail.code != NE_NOERROR)
{
 printf("Error from nag_zunmqr (f08auc).\n%s\n", fail.message);
 exit_status = 1;
 goto END;
}

/* Let Z*(y1) = (w1) and solving for w2 we have to solve the triangular sytem */

* (y2) = (w2)
* T22 * w2 = c2
* This is done by putting c2 in y2 and backsolving to get w2 in y2.
* Copy c2 (at d[m]) into y2 using nag_zge_copy (f16tfc). */

nag_zge_copy(Nag_ColMajor, Nag_NoTrans, nm, 1, &d[m], n-m, &y[npn], nm, &fail);
if (fail.code != NE_NOERROR)
{
 printf("Error from nag_zge_copy (f16tfc).\n%s\n", fail.message);
 exit_status = 1;
 goto END;
}

/* Solve T22*w2 = c2 using nag_ztrtrs (f07tsc). */

nag_ztrtrs(order, Nag_Upper, Nag_NoTrans, Nag_NonUnitDiag, nm, 1, &B[m+1,p-(n-m)+1], pdb, &y[npn], nm, &fail);
printf("Error from nag_ztrtrs (f07tsc).\n\n", fail.message);
exit_status = 1;
goto END;
}
/* set w1 = 0 for minimum norm y. */
nag_zload(pnm, zero, y, 1, &fail);
if (fail.code != NE_NOERROR)
{
 printf("Error from nag_zload (f16hbc).\n\n", fail.message);
 exit_status = 1;
 goto END;
}
/* Compute estimate of the square root of the residual sum of squares
* norm(y) = norm(w2) with y1 = 0 using nag_dge_norm (f16uac).
*/
nag_zge_norm(Nag_ColMajor, Nag_FrobeniusNorm, nm, 1, &y[pnm], nm, &rnorm, &fail);
if (fail.code != NE_NOERROR)
{
 printf("Error from nag_zge_norm (f16uac).\n\n", fail.message);
 exit_status = 1;
 goto END;
}
/* The top half of the system remains:
* (c1) = Q^H * d = (R) * x + (T11 T12) * (0)
* (w2)
* => c 1=R * x + T12 * w2
* first form d = c1 - T12*w2 where c1 is stored in d
* using nag_zgemv (f16sac).
*/
alpha = nag_complex(-1.0,0.0);
beta = nag_complex(1.0,0.0);
nag_zgemv(order, Nag_NoTrans, m, nm, alpha, &B(1, pnm + 1), pdb, &y[pnm], 1,
beta, d, 1, &fail);
if (fail.code != NE_NOERROR)
{
 printf("Error from nag_zgemv (f16sac).\n\n", fail.message);
 exit_status = 1;
 goto END;
}
/* Next, solve R *x = df o rx(i nd) where R is stored in leading submatrix
* of A in a. This gives the least squares solution x in d.
* Using nag_dtrtrs (f07tec).
*/
nag_ztrtrs(order, Nag_Upper, Nag_NoTrans, Nag_NonUnitDiag, m, 1, a, pda, d,
pdd, &fail);
if (fail.code != NE_NOERROR)
{
 printf("Error from nag_ztrtrs (f07tsc).\n\n", fail.message);
 exit_status = 1;
 goto END;
}
/* Compute the minimum norm residual vector y = (Z**T)*w
* using nag_dzunmrq (f08cxc).
*/
zrow = MAX(1, n - p + 1);
nag_zunmrq(order, Nag_LeftSide, Nag_ConjTrans, p, 1, MIN(n, p), &B(zrow, 1),
pdb, taub, y, pdd, &fail);
if (fail.code != NE_NOERROR)
{
 printf("Error from nag_zunmrq (f08cxc).\n\n", fail.message);
 exit_status = 1;
 goto END;
}
} /* Print least squares solution x */
printf("Generalized least squares solution\n");
for (i = 0; i < m; ++i)
 printf(" (%9.4f, %9.4f)\n", d[i].re, d[i].im, i%3 == 2?"\n":"");

/* Print residual vector y */
printf("\nResidual vector\n");
for (i = 0; i < p; ++i)
 printf(" (%9.2e, %9.2e)\n", y[i].re, y[i].im, i%3 == 2?"\n":"");

/* Print estimate of the square root of the residual sum of squares. */
printf("\nSquare root of the residual sum of squares\n");
printf("%11.2e\n", rnorm);
END:
NAG_FREE(a);
NAG_FREE(b);
NAG_FREE(d);
NAG_FREE(taua);
NAG_FREE(taub);
NAG_FREE(y);
return exit_status;
}

10.2 Program Data

nag_zggqrf (f08zsc) Example Program Data

<table>
<thead>
<tr>
<th>4</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.96,-0.81)</td>
<td>(0.03, 0.96)</td>
<td>(-0.91, 2.06)</td>
</tr>
<tr>
<td>(-0.98, 1.98)</td>
<td>(-1.20, 0.19)</td>
<td>(-0.66, 0.42)</td>
</tr>
<tr>
<td>(0.62,-0.46)</td>
<td>(1.01, 0.02)</td>
<td>(0.63,-0.17)</td>
</tr>
<tr>
<td>(1.08,-0.28)</td>
<td>(0.20,-0.12)</td>
<td>(-0.07, 1.23)</td>
</tr>
</tbody>
</table>

: matrix A

(0.50,-1.00)	(0.00, 0.00)	(0.00, 0.00)	(0.00, 0.00)
(0.00, 0.00)	(1.00,-2.00)	(0.00, 0.00)	(0.00, 0.00)
(0.00, 0.00)	(0.00, 0.00)	(2.00,-3.00)	(0.00, 0.00)
(0.00, 0.00)	(0.00, 0.00)	(0.00, 0.00)	(5.00,-4.00)

: matrix B

| (6.00,-0.40) | (-5.27, 0.90) |
| (2.72,-2.13) | (-1.30,-2.80) |

: vector d

10.3 Program Results

nag_zggqrf (f08zsc) Example Program Results

Generalized least squares solution
(-0.9846, 1.9950) (3.9929, -4.9748) (-3.0026, 0.9994)

Residual vector
(1.26e-04, -4.66e-04) (1.11e-03, -8.61e-04) (3.84e-03, -1.82e-03)
(2.03e-03, 3.02e-03)

Square root of the residual sum of squares
5.79e-03