NAG Library Function Document

\texttt{nag_dggqrf (f08zec)}

1 Purpose

\texttt{nag_dggqrf (f08zec)} computes a generalized QR factorization of a real matrix pair \((A, B)\), where \(A\) is an \(n \times m\) matrix and \(B\) is an \(n \times p\) matrix.

2 Specification

\begin{verbatim}
#include <nag.h>
#include <nagf08.h>

void nag_dggqrf (Nag_OrderType order, Integer n, Integer m, Integer p,
 double a[], Integer pda, double taua[], double b[], Integer pdb,
 double taub[], NagError *fail)
\end{verbatim}

3 Description

\texttt{nag_dggqrf (f08zec)} forms the generalized QR factorization of an \(n \times m\) matrix \(A\) and an \(n \times p\) matrix \(B\)

\[A = QR, \quad B = QTZ, \]

where \(Q\) is an \(n \times n\) orthogonal matrix, \(Z\) is a \(p \times p\) orthogonal matrix and \(R\) and \(T\) are of the form

\[R = \begin{cases}
 \begin{pmatrix}
 m \\
 n - m \\
 n - n
 \end{pmatrix}
 & \text{if } n \geq m; \\
 \begin{pmatrix}
 n \\
 m - n
 \end{pmatrix}
 & \text{if } n < m,
\end{cases} \]

with \(R_{11}\) upper triangular,

\[T = \begin{cases}
 \begin{pmatrix}
 p - n \\
 n \\
 0
 \end{pmatrix}
 & \text{if } n \leq p, \\
 \begin{pmatrix}
 n - p \\
 p
 \end{pmatrix}
 & \text{if } n > p,
\end{cases} \]

with \(T_{12}\) or \(T_{21}\) upper triangular.

In particular, if \(B\) is square and nonsingular, the generalized QR factorization of \(A\) and \(B\) implicitly gives the QR factorization of \(B^{-1}A\) as

\[B^{-1}A = Z^T (T^{-1}R). \]

4 References

5 Arguments

1: order – Nag_OrderType

On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by order = Nag_RowMajor. See Section 3.2.1.3 in the Essential Introduction for a more detailed explanation of the use of this argument.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: n – Integer

On entry: n, the number of rows of the matrices A and B.

Constraint: n ≥ 0.

3: m – Integer

On entry: m, the number of columns of the matrix A.

Constraint: m ≥ 0.

4: p – Integer

On entry: p, the number of columns of the matrix B.

Constraint: p ≥ 0.

5: a[dim] – double

Note: the dimension, dim, of the array a must be at least

max(1, pda × m) when order = Nag_ColMajor;
max(1, n × pda) when order = Nag_RowMajor.

The (i,j)th element of the matrix A is stored in

a[(j - 1) × pda + i - 1] when order = Nag_ColMajor;

a[(i - 1) × pda + j - 1] when order = Nag_RowMajor.

On exit: the n by m matrix A.

On exit: the elements on and above the diagonal of the array contain the min(n, m) by m upper trapezoidal matrix R (R is upper triangular if n ≥ m); the elements below the diagonal, with the array taua, represent the orthogonal matrix Q as a product of min(n, m) elementary reflectors (see Section 3.3.6 in the f08 Chapter Introduction).

6: pda – Integer

On entry: the stride separating row or column elements (depending on the value of order) in the array a.

Constraints:

if order = Nag_ColMajor, pda ≥ max(1, n);
if order = Nag_RowMajor, pda ≥ max(1, m).
On exit: the scalar factors of the elementary reflectors which represent the orthogonal matrix Q.

Note: the dimension, dim, of the array b must be at least

\[
\text{max}(1, \text{pdb} \times p) \quad \text{when order} = \text{Nag_ColMajor};
\]

\[
\text{max}(1, n \times \text{pdb}) \quad \text{when order} = \text{Nag_RowMajor}.
\]

Where $B(i, j)$ appears in this document, it refers to the array element

\[
b[(j - 1) \times \text{pdb} + i - 1] \quad \text{when order} = \text{Nag_ColMajor};
\]

\[
b[(i - 1) \times \text{pdb} + j - 1] \quad \text{when order} = \text{Nag_RowMajor}.
\]

On entry: the n by p matrix B.

On exit: if $n \leq p$, the upper triangle of the subarray $B(1 : n, p - n + 1 : p)$ contains the n by n upper triangular matrix T_1.

If $n > p$, the elements on and above the $(n - p)$th subdiagonal contain the n by p upper trapezoidal matrix T_1; the remaining elements, with the array taub, represent the orthogonal matrix Z as a product of elementary reflectors (see Section 3.3.6 in the f08 Chapter Introduction).

On entry: the stride separating row or column elements (depending on the value of order) in the array b.

Constraints:

if order = Nag_ColMajor, pdb \geq max(1, n);

if order = Nag_RowMajor, pdb \geq max(1, p).

On exit: the scalar factors of the elementary reflectors which represent the orthogonal matrix Z.

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM

On entry, argument $\langle value \rangle$ had an illegal value.

NE_INT

On entry, $m = \langle value \rangle$.

Constraint: $m \geq 0$.

On entry, $n = \langle value \rangle$.

Constraint: $n \geq 0$.

On entry, $p = \langle value \rangle$.

Constraint: $p \geq 0$.

On entry, $\text{pda} = \langle value \rangle$.

Constraint: $\text{pda} > 0$.
On entry, \(\text{pdb} = \langle \text{value} \rangle \).
Constraint: \(\text{pdb} > 0 \).

NE_INT_2

On entry, \(\text{pda} = \langle \text{value} \rangle \) and \(\text{m} = \langle \text{value} \rangle \).
Constraint: \(\text{pda} \geq \max(1, \text{m}) \).

On entry, \(\text{pda} = \langle \text{value} \rangle \) and \(\text{n} = \langle \text{value} \rangle \).
Constraint: \(\text{pda} \geq \max(1, \text{n}) \).

On entry, \(\text{pdb} = \langle \text{value} \rangle \) and \(\text{n} = \langle \text{value} \rangle \).
Constraint: \(\text{pdb} \geq \max(1, \text{n}) \).

On entry, \(\text{pdb} = \langle \text{value} \rangle \) and \(\text{p} = \langle \text{value} \rangle \).
Constraint: \(\text{pdb} \geq \max(1, \text{p}) \).

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG. See Section 3.6.6 in the Essential Introduction for further information.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly. See Section 3.6.5 in the Essential Introduction for further information.

7 Accuracy

The computed generalized QR factorization is the exact factorization for nearby matrices \((A + E)\) and \((B + F)\), where

\[
\|E\|_2 = O(\epsilon\|A\|_2) \quad \text{and} \quad \|F\|_2 = O(\epsilon\|B\|_2),
\]

and \(\epsilon\) is the *machine precision*.

8 Parallelism and Performance

\text{nag_dggqrf (f08zec)} is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.

\text{nag_dggqrf (f08zec)} makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users’ Note for your implementation for any additional implementation-specific information.

9 Further Comments

The orthogonal matrices \(Q\) and \(Z\) may be formed explicitly by calls to \text{nag_dorgqr (f08afc)} and \text{nag_dorgrq (f08cjc)} respectively. \text{nag_dormqr (f08agc)} may be used to multiply \(Q\) by another matrix and \text{nag_dormrq (f08ckc)} may be used to multiply \(Z\) by another matrix.

The complex analogue of this function is \text{nag_zggqrf (f08zsc)}.

The text is a documentation excerpt for a numerical function, detailing entry conditions, error handling, accuracy, parallelism, and further comments.
10 Example

This example solves the general Gauss–Markov linear model problem

\[
\min_x \|y\|_2 \quad \text{subject to} \quad d = Ax + By
\]

where

\[
A = \begin{pmatrix}
-0.57 & -1.28 & -0.39 \\
-1.93 & 1.08 & -0.31 \\
0.23 & 0.24 & -0.40 \\
-0.02 & 1.03 & -1.43 \\
\end{pmatrix}, \quad
B = \begin{pmatrix}
0.5 & 0 & 0 & 0 \\
0 & 1.0 & 0 & 0 \\
0 & 0 & 2.0 & 0 \\
0 & 0 & 0 & 5.0 \\
\end{pmatrix}
\]

and

\[
d = \begin{pmatrix}
1.32 \\
-4.00 \\
5.52 \\
3.24 \\
\end{pmatrix}.
\]

The solution is obtained by first computing a generalized QR factorization of the matrix pair \((A, B)\). The example illustrates the general solution process, although the above data corresponds to a simple weighted least squares problem.

10.1 Program Text

/* nag_dggqrf (f08zec) Example Program. */
* * Copyright 2014 Numerical Algorithms Group. *
* * Mark 23, 2011. */

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagf08.h>
#include <nagf16.h>

int main(void)
{
 int exit_status = 0;

 /* Scalars */
 double alpha, beta, rnorm;
 const double zero = 0.0;
 Integer i, j, m, n, nm, p, pda, pdb, pdd, pnm, zrow;

 /* Arrays */
 double *a = 0, *b = 0, *d = 0, *taua = 0, *taub = 0, *y = 0;

 INIT_FAIL(fail);
 printf("nag_dggqrf (f08zec) Example Program Results\n\n");

 INIT_FAIL(fail);
 printf("nag_dggqrf (f08zec) Example Program Results\n\n");

 /* Skip heading in data file */
 #ifdef _WIN32
 scanf_s("%*[\n"]);
 #else
 scanf("%*[\n"]);
 endif
 #ifdef _WIN32
 scanf_s("%*[\n"]);
 #else
 scanf("%*[\n"]);
 endif
}
scanf_s("%"NAG_IFMT"%"NAG_IFMT"%"NAG_IFMT"%*[\n]", &n, &m, &p);
#endif
scanf("%"NAG_IFMT"%"NAG_IFMT"%"NAG_IFMT"%*[\n]", &n, &m, &p);
#endif
if (n<0 || m<0 || p<0)
{
 printf("Invalid n, m or p\n");
 exit_status = 1;
 goto END;
}
#ifdef NAG_COLUMN_MAJOR
pda = n;
pdb = n;
pdd = n;
#else
pda = m;
pdb = p;
pdd = 1;
#endif
/* Allocate memory */
if (!(a = NAG_ALLOC(n*m, double)) ||
!(b = NAG_ALLOC(n*p, double)) ||
!(d = NAG_ALLOC(MAX(n, m), double)) ||
!(taua = NAG_ALLOC(MIN(m, n), double)) ||
!(taub = NAG_ALLOC(MIN(n, p), double)) ||
!(y = NAG_ALLOC(p, double)))
{
 printf("Allocation failure\n");
 exit_status = -1;
 goto END;
}
/* Read A, B and d from data file */
for (i = 1; i <= n; ++i)
#ifdef _WIN32
 for (j = 1; j <= m; ++j) scanf_s("%lf", &A(i, j));
#else
 for (j = 1; j <= m; ++j) scanf("%lf", &A(i, j));
#endif
#ifdef _WIN32
 scanf_s("%*[\n]");
#else
 scanf("%*[\n]");
#endif
for (i = 1; i <= n; ++i)
#ifdef _WIN32
 for (j = 1; j <= p; ++j) scanf_s("%lf", &B(i, j));
#else
 for (j = 1; j <= p; ++j) scanf("%lf", &B(i, j));
#endif
#ifdef _WIN32
 scanf_s("%*[\n]");
#else
 scanf("%*[\n]");
#endif
/* Compute the generalized QR factorization of (A,B) as
 A = Q*(R), B = Q*(T11 T12)*Z
 (0) (0 T22)*/
* using nag_dggqrf (f08zec).
*/

nag_dggqrf(order, n, m, p, a, pda, taua, b, pdb, taub, &fail);
if (fail.code != NE_NOERROR)
{
 printf("Error from nag_dggqrf (f08zec).\n\n\n", fail.message);
 exit_status = 1;
 goto END;
}

/* Solve weighted least-squares problem for case n > m */
if (n <= m) goto END;

nm = n - m;
pnm = p - nm;

/* Multiply Q^T through d = Ax + By to get */

 \(c1 \) = Q^T * d = (R) * x + (T11 T12) * Z * (y1)

 \(c2 \)

/* Compute C using nag_dormqr (f08agc). */

nag_dormqr(order, Nag_LeftSide, Nag_Trans, n, m, a, pda, taua, d, pdd,
 &fail);
if (fail.code != NE_NOERROR)
{
 printf("Error from nag_dormqr (f08agc).\n\n\n", fail.message);
 exit_status = 1;
 goto END;
}

/* Let Z*(y1) = (w1) and solving for w2 we have to solve the triangular sytem */

 \(y2 \)

/* This is done by putting c2 in y2 and backsolving to get w2 in y2. */

/* Copy c2 (at d[m]) into y2 using nag_dge_copy (f16qfc). */
nag_dge_copy(Nag_ColMajor, Nag_NoTrans, nm, 1, &d[m], n-m, &y[pnm], nm,
 &fail);
if (fail.code != NE_NOERROR)
{
 printf("Error from nag_dge_copy (f16qfc).\n\n\n", fail.message);
 exit_status = 1;
 goto END;
}

/* Solve T22*w2 = c2 using nag_dtrtrs (f07tec). */

nag_dtrtrs(order, Nag_Upper, Nag_NoTrans, Nag_NonUnitDiag, nm, 1,
 &B(m + 1, pnm + 1), pdb, &y[pnm], nm, &fail);
if (fail.code != NE_NOERROR)
{
 printf("Error from nag_dtrtrs (f07tec).\n\n\n", fail.message);
 exit_status = 1;
 goto END;
}

/* set w1 = 0 for minimum norm y. */
nag_dload(m + p - n, zero, y, 1, &fail);
if (fail.code != NE_NOERROR)
{
 printf("Error from nag_dload.\n\n\n", fail.message);
 exit_status = 1;
 goto END;
}

/* Compute estimate of the square root of the residual sum of squares */
nag_dge_norm(Nag_ColMajor, Nag_FrobeniusNorm, n-m, 1, &y[pnm],
 nm, &rnorm, &fail);
if (fail.code != NE_NOERROR)
{
 printf("Error from nag_dge_norm (fl6rac).\n%\n\n", fail.message);
 exit_status = 1;
 goto END;
}

/* The top half of the system remains:
 * (c1) = Q^T * d = (R) * x + (T11 T12) * (0)
 * (w2)
 * => c1 = R * x + T12 * w2
 * => R * x = c1 - T12 * w2;
 * first form d = c1 - T12*w2 where c1 is stored in d
 * using nag_dgemv (fl6pac).
 */
alpha = -1.0;
beta = 1.0;
nag_dgemv(order, Nag_NoTrans, m, nm, alpha, &B(1, pnm + 1), pdb, &y[pnm], 1,
beta, d, l, &fail);
if (fail.code != NE_NOERROR)
{
 printf("Error from nag_dgemv (fl6pac).\n%\n\n", fail.message);
 exit_status = 1;
 goto END;
}

/* Next, solve R *x = d for x (in d) where R is stored in leading submatrix
 * of A in a. This gives the least squares solution x in d.
 * Using nag_dtrtrs (f07tec).
 */
nag_dtrtrs(order, Nag_Upper, Nag_NoTrans, Nag_NonUnitDiag, m, 1, a, pda, d,
pdd, &fail);
if (fail.code != NE_NOERROR)
{
 printf("Error from nag_dtrtrs (f07tec).\n%\n\n", fail.message);
 exit_status = 1;
 goto END;
}

/* Compute the minimum norm residual vector y = (Z**T)*w
 * using nag_dormrq (f08ckc).
 */
zrow = MAX(1, n - p + 1);
nag_dormrq(order, Nag_LeftSide, Nag_Trans, p, 1, MIN(n, p), &B(zrow, 1), pdb,
taub, y, pdd, &fail);
if (fail.code != NE_NOERROR)
{
 printf("Error from nag_dormrq (f08ckc).\n%\n\n", fail.message);
 exit_status = 1;
 goto END;
}

/* Print least squares solution x */
printf("Generalized least squares solution\n");
for (i = 0; i < m; ++i) printf(" %11.4f\n", d[i];
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
NAG_FREE(taub);
NAG_FREE(y);

return exit_status;
}

10.2 Program Data

nag_dggqrf (f08zec) Example Program Data

4 3 4 : n, m and p
-0.57 -1.28 -0.39
-1.93 1.08 -0.31
2.30 0.24 -0.40
-0.02 1.03 -1.43 : matrix A

0.50 0.00 0.00 0.00
0.00 1.00 0.00 0.00
0.00 0.00 2.00 0.00
0.00 0.00 0.00 5.00 : matrix B

1.32
-4.00
5.52
3.24 : vector d

10.3 Program Results

nag_dggqrf (f08zec) Example Program Results

Generalized least squares solution
1.9889 -1.0058 -2.9911

Residual vector
-6.37e-04 -2.45e-03 -4.72e-03 7.70e-03

Square root of the residual sum of squares
9.38e-03

Mark 25

f08zec.9 (last)