NAG Library Function Document

nag_zggesx (f08xpc)

1 Purpose

nag_zggesx (f08xpc) computes the generalized eigenvalues, the generalized Schur form \((S, T)\) and, optionally, the left and/or right generalized Schur vectors for a pair of \(n\) by \(n\) complex nonsymmetric matrices \((A, B)\).

Estimates of condition numbers for selected generalized eigenvalue clusters and Schur vectors are also computed.

2 Specification

\[
\begin{align*}
\text{#include <nag.h> } & \quad \text{#include <nagf08.h>} \\
\text{void nag_zggesx (Nag_OrderType order, Nag_LeftVecsType jobvsl, } & \quad \text{Nag_RightVecsType jobvsr, Nag_SortEigValsType sort,} \\
& \quad \text{Nag_Boolean (*selctg)(Complex a, Complex b),} \\
& \quad \text{Nag_RCondType sense, Integer n, Complex a[], Integer pda, Complex b[],} \\
& \quad \text{Integer pdb, Integer *sdim, Complex alpha[], Complex beta[],} \\
& \quad \text{Complex vsl[], Integer pdvsl, Complex vsr[], Integer pdvsr,} \\
& \quad \text{double rconde[], double rcondv[], NagError *fail)}
\end{align*}
\]

3 Description

The generalized Schur factorization for a pair of complex matrices \((A, B)\) is given by

\[
A = QSZ^H, \quad B = QTZ^H,
\]

where \(Q\) and \(Z\) are unitary, \(T\) and \(S\) are upper triangular. The generalized eigenvalues, \(\lambda\), of \((A, B)\) are computed from the diagonals of \(T\) and \(S\) and satisfy

\[
Az = \lambda Bz,
\]

where \(z\) is the corresponding generalized eigenvector. \(\lambda\) is actually returned as the pair \((\alpha, \beta)\) such that

\[
\lambda = \alpha / \beta
\]

since \(\beta\), or even both \(\alpha\) and \(\beta\) can be zero. The columns of \(Q\) and \(Z\) are the left and right generalized Schur vectors of \((A, B)\).

Optionally, nag_zggesx (f08xpc) can order the generalized eigenvalues on the diagonals of \((S, T)\) so that selected eigenvalues are at the top left. The leading columns of \(Q\) and \(Z\) then form an orthonormal basis for the corresponding eigenspaces, the deflating subspaces.

nag_zggesx (f08xpc) computes \(T\) to have real non-negative diagonal entries. The generalized Schur factorization, before reordering, is computed by the \(QZ\) algorithm.

The reciprocals of the condition estimates, the reciprocal values of the left and right projection norms, are returned in \rconde[0] and \rconde[1] respectively, for the selected generalized eigenvalues, together with reciprocal condition estimates for the corresponding left and right deflating subspaces, in \rcondv[0] and \rcondv[1]. See Section 4.11 of Anderson et al. (1999) for further information.
4 References

5 Arguments

1: \(order\) – \(\text{Nag_OrderType}\) \(\text{Input}\)

\(On\ \text{entry:}\) the \(order\) argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by \(order = \text{Nag_RowMajor}\). See Section 3.2.1.3 in the Essential Introduction for a more detailed explanation of the use of this argument.

\(Constraint: order = \text{Nag_RowMajor or Nag_ColMajor}\).

2: \(jobvsl\) – \(\text{Nag_LeftVecsType}\) \(\text{Input}\)

\(On\ \text{entry:}\) if \(jobvsl = \text{Nag_NotLeftVecs}\), do not compute the left Schur vectors.

If \(jobvsl = \text{Nag_LeftVecs}\), compute the left Schur vectors.

\(Constraint: jobvsl = \text{Nag_NotLeftVecs or Nag_LeftVecs}\).

3: \(jobvsr\) – \(\text{Nag_RightVecsType}\) \(\text{Input}\)

\(On\ \text{entry:}\) if \(jobvsr = \text{Nag_NotRightVecs}\), do not compute the right Schur vectors.

If \(jobvsr = \text{Nag_RightVecs}\), compute the right Schur vectors.

\(Constraint: jobvsr = \text{Nag_NotRightVecs or Nag_RightVecs}\).

4: \(sort\) – \(\text{Nag_SortEigValsType}\) \(\text{Input}\)

\(On\ \text{entry:}\) specifies whether or not to order the eigenvalues on the diagonal of the generalized Schur form.

\(sort = \text{Nag_NoSortEigVals}\)

Eigenvalues are not ordered.

\(sort = \text{Nag_SortEigVals}\)

Eigenvalues are ordered (see \(\text{selctg}\)).

\(Constraint: sort = \text{Nag_NoSortEigVals or Nag_SortEigVals}\).

5: \(\text{selctg}\) – function, supplied by the user \(\text{External Function}\)

If \(sort = \text{Nag_SortEigVals}\), \(\text{selctg}\) is used to select generalized eigenvalues to the top left of the generalized Schur form.

If \(sort = \text{Nag_NoSortEigVals}\), \(\text{selctg}\) is not referenced by nag_zggesx (f08xpc), and may be specified as NULLFN.

The specification of \(\text{selctg}\) is:

\[\text{Nag_Boolean selctg (Complex a, Complex b)}\]

1: \(a\) – Complex \(\text{Input}\)

2: \(b\) – Complex \(\text{Input}\)

\(On\ \text{entry:}\) an eigenvalue \(a[j-1]/b[j-1]\) is selected if \(\text{selctg}(a[j-1],b[j-1])\) is \(\text{Nag_TRUE}\).
Note that in the ill-conditioned case, a selected generalized eigenvalue may no longer satisfy $\text{selectg}(a[j-1], b[j-1]) = \text{Nag_TRUE}$ after ordering. $\text{fail.code} = \text{NE_SCHUR_REORDER_SELECT}$ in this case.

6: sense – Nag_RCondType

Input

On entry: determines which reciprocal condition numbers are computed.

- $\text{sense} = \text{Nag_NotRCond}$
 None are computed.
- $\text{sense} = \text{Nag_RCondEigVals}$
 Computed for average of selected eigenvalues only.
- $\text{sense} = \text{Nag_RCondEigVecs}$
 Computed for selected deflating subspaces only.
- $\text{sense} = \text{Nag_RCondBoth}$
 Computed for both.

If $\text{sense} = \text{Nag_RCondEigVals}$, Nag_RCondEigVecs or Nag_RCondBoth, $\text{sort} = \text{Nag_SortEigVals}$.

Constraint:

- $\text{sense} = \text{Nag_NotRCond}$, Nag_RCondEigVals, Nag_RCondEigVecs or Nag_RCondBoth.

7: n – Integer

Input

On entry: n, the order of the matrices A and B.

Constraint:

- $n \geq 0$.

8: $a[dim]$ – Complex

Input/Output

Note: the dimension, dim, of the array a must be at least $\max(1, pda \times n)$.

The (i,j)th element of the matrix A is stored in

- $a[(j-1) \times pda + i - 1]$ when $\text{order} = \text{Nag_ColMajor}$;
- $a[(i-1) \times pda + j - 1]$ when $\text{order} = \text{Nag_RowMajor}$.

On entry: the first of the pair of matrices, A.

On exit: a has been overwritten by its generalized Schur form S.

9: pda – Integer

Input

On entry: the stride separating row or column elements (depending on the value of order) in the array a.

Constraint:

- $pda \geq \max(1, n)$.

10: $b[dim]$ – Complex

Input/Output

Note: the dimension, dim, of the array b must be at least $\max(1, pdb \times n)$.

The (i,j)th element of the matrix B is stored in

- $b[(j-1) \times pdb + i - 1]$ when $\text{order} = \text{Nag_ColMajor}$;
- $b[(i-1) \times pdb + j - 1]$ when $\text{order} = \text{Nag_RowMajor}$.

On entry: the second of the pair of matrices, B.

On exit: b has been overwritten by its generalized Schur form T.

Mark 25
11: \texttt{pdb} – Integer \hspace{1cm} \textit{Input}
\begin{itemize}
 \item \textit{On entry:} the stride separating row or column elements (depending on the value of \texttt{order}) in the array \texttt{b}.
 \item \textit{Constraint:} \(\texttt{pdb} \geq \max(1, n) \).
\end{itemize}

12: \texttt{sdim} – Integer * \hspace{1cm} \textit{Output}
\begin{itemize}
 \item \textit{On exit:} if \texttt{sort} = \texttt{Nag_NoSortEigVals}, \texttt{sdim} = 0.
 \item If \texttt{sort} = \texttt{Nag_SortEigVals}, \texttt{sdim} = number of eigenvalues (after sorting) for which \texttt{select} is \texttt{Nag_TRUE}.
\end{itemize}

13: \texttt{alpha}[n] – Complex \hspace{1cm} \textit{Output}
\begin{itemize}
 \item \textit{On exit:} see the description of \texttt{beta}.
\end{itemize}

14: \texttt{beta}[n] – Complex \hspace{1cm} \textit{Output}
\begin{itemize}
 \item \textit{On exit:} \(\texttt{alpha}[j - 1]/\texttt{beta}[j - 1] \), for \(j = 1, 2, \ldots, n \), will be the generalized eigenvalues. \texttt{alpha}[j - 1] and \texttt{beta}[j - 1], \(j = 1, 2, \ldots, n \) are the diagonals of the complex Schur form \((S,T)\). \texttt{beta}[j - 1] will be non-negative real.
 \item \textit{Note:} the quotients \(\texttt{alpha}[j - 1]/\texttt{beta}[j - 1] \) may easily overflow or underflow, and \texttt{beta}[j - 1] may even be zero. Thus, you should avoid naively computing the ratio \(\alpha/\beta \). However, \texttt{alpha} will always be less than and usually comparable with \(||a|| \) in magnitude, and \texttt{beta} will always be less than and usually comparable with \(||b|| \).
\end{itemize}

15: \texttt{vsl}[dim] – Complex \hspace{1cm} \textit{Output}
\begin{itemize}
 \item \textit{Note:} the dimension, \texttt{dim}, of the array \texttt{vsl} must be at least \(\max(1, \texttt{pdvsl} \times n) \) when \texttt{jobvsl} = \texttt{Nag_LeftVecs}; 1 otherwise.
 \item The \(i \)th element of the \(j \)th vector is stored in
 \begin{align*}
 \texttt{vsl}[(j - 1) \times \texttt{pdvsl} + i - 1] & \text{ when } \texttt{order} = \texttt{Nag_ColMajor}; \\
 \texttt{vsl}[(i - 1) \times \texttt{pdvsl} + j - 1] & \text{ when } \texttt{order} = \texttt{Nag_RowMajor}.
 \end{align*}
 \item \textit{On exit:} if \texttt{jobvsl} = \texttt{Nag_LeftVecs}, \texttt{vsl} will contain the left Schur vectors, \(Q \).
 \item If \texttt{jobvsl} = \texttt{Nag_NotLeftVecs}, \texttt{vsl} is not referenced.
\end{itemize}

16: \texttt{pdvsl} – Integer \hspace{1cm} \textit{Input}
\begin{itemize}
 \item \textit{On entry:} the stride used in the array \texttt{vsl}.
 \item \textit{Constraints:}
 \begin{align*}
 \text{if } \texttt{jobvsl} = \texttt{Nag_LeftVecs}, & \quad \texttt{pdvsl} \geq \max(1, n); \\
 \text{otherwise } & \quad \texttt{pdvsl} \geq 1.
 \end{align*}
\end{itemize}

17: \texttt{vsr}[dim] – Complex \hspace{1cm} \textit{Output}
\begin{itemize}
 \item \textit{Note:} the dimension, \texttt{dim}, of the array \texttt{vsr} must be at least \(\max(1, \texttt{pdvsr} \times n) \) when \texttt{jobvsr} = \texttt{Nag_RightVecs}; 1 otherwise.
 \item The \(i \)th element of the \(j \)th vector is stored in
 \begin{align*}
 \texttt{vsr}[(j - 1) \times \texttt{pdvsr} + i - 1] & \text{ when } \texttt{order} = \texttt{Nag_ColMajor}; \\
 \texttt{vsr}[(i - 1) \times \texttt{pdvsr} + j - 1] & \text{ when } \texttt{order} = \texttt{Nag_RowMajor}.
 \end{align*}
 \item \textit{On exit:} if \texttt{jobvsr} = \texttt{Nag_RightVecs}, \texttt{vsr} will contain the right Schur vectors, \(Z \).
 \item If \texttt{jobvsr} = \texttt{Nag_NotRightVecs}, \texttt{vsr} is not referenced.
18: pdvsr – Integer

On entry: the stride used in the array vsr.

Constraints:
if jobvsr = Nag_RightVecs, pdvsr ≥ max(1, n);
otherwise pdvsr ≥ 1.

Output

On exit: if sense = Nag_RCondEigVals or Nag_RCondBoth, rconde[0] and rconde[1] contain the reciprocal condition numbers for the average of the selected eigenvalues.
If sense = Nag_NotRCond or Nag_RCondEigVecs, rconde is not referenced.

Output

On exit: if sense = Nag_RCondEigVecs or Nag_RCondBoth, rcondv[0] and rcondv[1] contain the reciprocal condition numbers for the selected deflating subspaces.
if sense = Nag_NotRCond or Nag_RCondEigVals, rcondv is not referenced.

21: fail – NagError *

Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM
On entry, argument ⟨value⟩ had an illegal value.

NE_ENUM_INT_2
On entry, jobvsl = ⟨value⟩, pdvsl = ⟨value⟩ and n = ⟨value⟩.
Constraint: if jobvsl = Nag_LeftVecs, pdvsl ≥ max(1, n);
otherwise pdvsl ≥ 1.

On entry, jobvsr = ⟨value⟩, pdvsr = ⟨value⟩ and n = ⟨value⟩.
Constraint: if jobvsr = Nag_RightVecs, pdvsr ≥ max(1, n);
otherwise pdvsr ≥ 1.

NE_INT
On entry, n = ⟨value⟩.
Constraint: n ≥ 0.

On entry, pda = ⟨value⟩.
Constraint: pda > 0.

On entry, pdb = ⟨value⟩.
Constraint: pdb > 0.

On entry, pdvsl = ⟨value⟩.
Constraint: pdvsl > 0.

On entry, pdvsr = ⟨value⟩.
Constraint: pdvsr > 0.
On entry, $pda = \langle value \rangle$ and $n = \langle value \rangle$.
Constraint: $pda \geq \max(1, n)$.

On entry, $pdb = \langle value \rangle$ and $n = \langle value \rangle$.
Constraint: $pdb \geq \max(1, n)$.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG. See Section 3.6.6 in the Essential Introduction for further information.

NE_ITERATION_QZ

The QZ iteration failed. (A, B) are not in Schur form, but $\alpha[j]$ and $\beta[j]$ should be correct from element $\langle value \rangle$.

The QZ iteration failed with an unexpected error, please contact NAG.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly. See Section 3.6.5 in the Essential Introduction for further information.

NE_SCHUR_REORDER

The eigenvalues could not be reordered because some eigenvalues were too close to separate (the problem is very ill-conditioned).

NE_SCHUR_REORDER_SELECT

After reordering, roundoff changed values of some complex eigenvalues so that leading eigenvalues in the generalized Schur form no longer satisfy $\text{selectg} = \text{Nag_TRUE}$. This could also be caused by underflow due to scaling.

7 Accuracy

The computed generalized Schur factorization satisfies

$$A + E = QSZ^T, \quad B + F = QTZ^T,$$

where

$$\|(E, F)\|_F = O(\epsilon)\|(A, B)\|_F$$

and ϵ is the **machine precision**. See Section 4.11 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

nag_zggesx (f08xpc) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.

nag_zggesx (f08xpc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users’ Note for your implementation for any additional implementation-specific information.
9 Further Comments

The total number of floating-point operations is proportional to n^3.

The real analogue of this function is nag_dggesx (f08xbc).

10 Example

This example finds the generalized Schur factorization of the matrix pair (A, B), where

$$A = \begin{pmatrix}
-21.10 - 22.50i & 53.50 - 50.50i & -34.50 + 127.50i & 7.50 + 0.50i \\
-0.46 - 7.78i & -3.50 - 37.50i & -15.50 + 58.50i & -10.50 - 1.50i \\
4.30 - 5.50i & 39.70 - 17.10i & -68.50 + 12.50i & -7.50 - 3.50i \\
5.50 + 4.40i & 14.40 + 43.30i & -32.50 - 46.00i & -19.00 - 32.50i \\
\end{pmatrix}$$

and

$$B = \begin{pmatrix}
1.00 - 5.00i & 1.60 + 1.20i & -3.00 + 0.00i & 0.00 - 1.00i \\
0.80 - 0.60i & 3.00 - 5.00i & -4.00 + 3.00i & -2.40 - 3.20i \\
1.00 + 0.00i & 2.40 + 1.80i & -4.00 - 5.00i & 0.00 - 3.00i \\
0.00 + 1.00i & -1.80 + 2.40i & 0.00 - 4.00i & 4.00 - 5.00i \\
\end{pmatrix},$$

such that the eigenvalues of (A, B) for which $|\lambda| < 6$ correspond to the top left diagonal elements of the generalized Schur form, (S, T). Estimates of the condition numbers for the selected eigenvalue cluster and corresponding deflating subspaces are also returned.

10.1 Program Text

/* nag_zggesx (f08xpc) Example Program.
 * Copyright 2014 Numerical Algorithms Group.
 * Mark 25, 2014.
 */
#include <stdio.h>
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
#include <nagf16.h>
#include <nagx02.h>
#include <nagx04.h>
#if define __cplusplus
extern "C" {
#endif
static Nag_Boolean NAG_CALL selctg(const Complex a, const Complex b);
#if define __cplusplus}
#endif
int main(void)
{
 /* Scalars */
 Complex alph, bet, z;
 double abnorm, norma, normb, normd, norme, eps, tol;
 Integer i, j, n, sdim, pda, pdb, pdc, pdd, pde, pdvsl, pdvsr;
 Integer exit_status = 0;
 /* Arrays */
 Complex *a = 0, *alpha = 0, *b = 0, *beta = 0, *c = 0, *d = 0;
 Complex *e = 0, *vsl = 0, *vsr = 0;
 double *rconde[2], *rcondv[2];
 char nag_enum_arg[40];

Mark 25
/* Nag Types */
NagError fail;
Nag_OrderType order;
Nag_LeftVecsType jobvsl;
Nag_RightVecsType jobvsr;
Nag_SortEigValsType sort = Nag_SortEigVals;
Nag_RCondType sense;

#ifdef NAG_COLUMN_MAJOR
define A(I, J) a[(J-1)*pda +I -1]
define B(I, J) b[(J-1)*pdb +I -1]
order = Nag_COL_MAJOR;
#else
define A(I, J) a[(I-1)*pda +J -1]
define B(I, J) b[(I-1)*pdb +J -1]
order = Nag_ROW_MAJOR;
#endif

INIT_FAIL(fail);

printf("nag_zggesx (f08xpc) Example Program Results\n\n");

/* Skip heading in data file */
#ifdef _WIN32
scanf_s("%*[\n]");
#else
scanf("%*[\"]");
#endif

#ifdef _WIN32
scanf_s("%"NAG_IFMT"%*[\n]", &n);
#else
scanf("%"NAG_IFMT"%*[\n]", &n);
#endif
if (n < 0)
{
 printf("Invalid n\n");
 exit_status = 1;
 return exit_status;
}

*/ nag_enum_name_to_value (x04nac).
* Converts NAG enum member name to value */
jobvsl = (Nag_LeftVecsType) nag_enum_name_to_value(nag_enum_arg);
#ifdef _WIN32
scanf_s(" %39s*\n", nag_enum_arg, _countof(nag_enum_arg));
#else
scanf(" %39s*\n", nag_enum_arg);
#endif

jobvsr = (Nag_RightVecsType) nag_enum_name_to_value(nag_enum_arg);
#ifdef _WIN32
scanf_s(" %39s*\n", nag_enum_arg, _countof(nag_enum_arg));
#else
scanf(" %39s*\n", nag_enum_arg);
#endif

sense = (Nag_RCondType) nag_enum_name_to_value(nag_enum_arg);

pdvsl = (jobvsl==Nag_LeftVecs?n:1);
pdvsr = (jobvsr==Nag_RightVecs?n:1);
pda = n;
pdb = n;
pdc = n;
pdd = n;
pde = n;

/* Allocate memory */
if (!((a = NAG_ALLOC(n * n, Complex)) ||
 !((b = NAG_ALLOC(n * n, Complex)) ||
 null))}
!{c = NAG_ALLOC(n * n, Complex)) ||
!{d = NAG_ALLOC(n * n, Complex)) ||
!{e = NAG_ALLOC(n * n, Complex)) ||
!{alpha = NAG_ALLOC(n, Complex)) ||
!{beta = NAG_ALLOC(n, Complex)) ||
!{vsl = NAG_ALLOC(pdvs1*pdvs1, Complex)) ||
!{vsr = NAG_ALLOC(pdvsr*pdvsr, Complex))
}
{
printf("Allocation failure\\n");
exit_status = -1;
goto END;
}

/* Read in the matrices A and B */
for (i = 1; i <= n; ++i)
for (j = 1; j <= n; ++j)
#ifdef _WIN32
scanf_s(" (%lf , %lf)", &A(i, j).re, &A(i, j).im);
#else
scanf(" (%lf , %lf)", &A(i, j).re, &A(i, j).im);
#endif
#ifdef _WIN32
scanf_s(%*[\n");
#else
scanf(%*[\n");
#endif
for (i = 1; i <= n; ++i)
for (j = 1; j <= n; ++j)
#ifdef _WIN32
scanf_s(" (%lf , %lf)", &B(i, j).re, &B(i, j).im);
#else
scanf(" (%lf , %lf)", &B(i, j).re, &B(i, j).im);
#endif
#ifdef _WIN32
scanf_s(%*[\n");
#else
scanf(%*[\n");
#endif

/* Copy matrices A and B to matrices D and E using nag_zge_copy (f16tfc),
* Complex valued general matrix copy.
* The copies will be used as comparison against reconstructed matrices.
*/
if (fail.code != NE_NOERROR)
{
printf("Error from nag_zge_copy (f16tfc).\n%\s\\n", fail.message);
exit_status = 1;
goto END;
}

if (fail.code != NE_NOERROR)
{
printf("Error from nag_zge_copy (f16tfc).\n%\s\\n", fail.message);
exit_status = 1;
goto END;
}

if (fail.code != NE_NOERROR)
{
printf("Error from nag_zge_copy (f16tfc).\n%\s\\n", fail.message);
exit_status = 1;
goto END;
}

if (fail.code != NE_NOERROR)
{
printf("Error from nag_zge_copy (f16tfc).\n%\s\\n", fail.message);
exit_status = 1;
goto END;
}

if (fail.code != NE_NOERROR)
{
printf("Error from nag_zge_copy (f16tfc).\n%\s\\n", fail.message);
exit_status = 1;
goto END;
}

if (fail.code != NE_NOERROR)
{
printf("Error from nag_zge_copy (f16tfc).\n%\s\\n", fail.message);
exit_status = 1;
goto END;
}
/* nag_gen_complx_mat_print_comp (x04dbc): Print matrices A and B. */
fprintf(stdout, "Matrix A", Nag_IntegerLabels, 0,
Nag_IntegerLabels, 0, 80, 0, 0, &fail);

if (fail.code != NE_NOERROR)
{
 printf("Error from nag_gen_complx_mat_print_comp (x04dbc).\n%s\n", fail.message);
 exit_status = 1;
 goto END;
}

fflush(stdout);

/* nag_gen_complx_mat_print_comp (x04dbc): Print matrices A and B. */

nag_gen_complx_mat_print_comp(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n,
 n, a, pda, Nag_BracketForm, "%6.2f",
 "Matrix B", Nag_IntegerLabels, 0,
Nag_IntegerLabels, 0, 80, 0, 0, &fail);

if (fail.code != NE_NOERROR)
{
 printf("Error from nag_gen_complx_mat_print_comp (x04dbc).
%s
", fail.message);
 exit_status = 1;
 goto END;
}

fflush(stdout);

nag_gen_complx_mat_print_comp(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n,
 n, b, pdb, Nag_BracketForm, "%6.2f",
 "Matrix B", Nag_IntegerLabels, 0,
Nag_IntegerLabels, 0, 80, 0, 0, &fail);

if (fail.code != NE_NOERROR)
{
 printf("Error from nag_gen_complx_mat_print_comp (x04dbc).
%s
", fail.message);
 exit_status = 1;
 goto END;
}

/* Find the generalized Schur form using nag_zggesx (f08xpc). */

nag_zggesx(order, jobvsl, jobvsr, sort, selctg, sense, n, a, pda, b, pdb,
 &sdim, alpha, beta, vsl, pdvsl, vsr, pdvsr, rconde, rcondv, &fail);

if (fail.code != NE_NOERROR && fail.code != NE_SCHUR_REORDER_SELECT)
{
 printf("Error from nag_zggesx (f08xpc).
%s
", fail.message);
 exit_status = 1;
 goto END;
}

/* Check generalized Schur Form by reconstruction of Schur vectors are
available. */

if (jobvsl==Nag_NotLeftVecs || jobvsr==Nag_NotRightVecs)
{
 /* Cannot check factorization by reconstruction Schur vectors. */
 goto END;
}

/* Reconstruct A as Q*S*Z^H and subtract from original (D) using the steps
* C = Q (Q in vsl) using nag_zge_copy (f16tfc).
* C = C*S (S in a, upper triangular) using nag_ztrmm (f16zfc).
* D = D - C*Z^H (Z in vsr) using nag_zgemm (f16zac).
*/

nag_zge_copy(order, Nag_NoTrans, n, n, vsl, pdvsl, c, pdc, &fail);

alph = nag_complex(1.0,0.0);

nag_ztrmm(order, Nag_RightSide, Nag_Upper, Nag_NoTrans, Nag_NonUnitDiag, n,
 n, alpha, a, pda, c, pdc, &fail);

if (fail.code != NE_NOERROR)
{
 printf("Error from nag_ztrmm (f16zfc).\n%s\n", fail.message);
 exit_status = 1;
 goto END;
}

alph = nag_complex(-1.0,0.0);

bet = nag_complex(1.0,0.0);

nag_zgemm(order, Nag_NoTrans, Nag_ConjTrans, n, n, n, alph, c, pdc, vsr,
if (fail.code != NE_NOERROR)
{
 printf("Error from nag_zgemm (f16zac).\n%s\n", fail.message);
 exit_status = 1;
 goto END;
}
/* Reconstruct B as Q*T*Z^H and subtract from original (E) using the steps
 * Q = Q*T (Q in vsl, T in b, upper triangular) using nag_ztrmm (f16zfc).
 * E = E - Q*Z^H (Z in vsr) using nag_zgemm (f16zac).
 */
alph = nag_complex(1.0,0.0);
/* nag_ztrmm (f16zfc) Triangular complex matrix-matrix multiply. */
nag_ztrmm(order, Nag_RightSide, Nag_Upper, Nag_NoTrans, Nag_NoUnitDiag, n,
 n, alph, b, pdb, vsl, pdvsl, &fail);
if (fail.code != NE_NOERROR)
{
 printf("Error from nag_ztrmm (f16zfc).\n%s\n", fail.message);
 exit_status = 1;
 goto END;
}
alph = nag_complex(-1.0,0.0);
bet = nag_complex(1.0,0.0);
nag_zgemm(order, Nag_NoTrans, Nag_ConjTrans, n, n, n, alph, vsl, pdvsl, vsr,
 pdvsr, bet, e, pde, &fail);
if (fail.code != NE_NOERROR)
{
 printf("Error from nag_zgemm (f16zac).\n%s\n", fail.message);
 exit_status = 1;
 goto END;
}
/* nag_zge_norm (f16uac): Find norms of difference matrices D and E. */
nag_zge_norm(order, Nag_FrobeniusNorm, n, n, d, pdd, &normd, &fail);
if (fail.code != NE_NOERROR)
{
 printf("Error from nag_zge_norm (f16uac).\n%s\n", fail.message);
 exit_status = 1;
 goto END;
}
nag_zge_norm(order, Nag_FrobeniusNorm, n, n, e, pde, &norme, &fail);
if (fail.code != NE_NOERROR)
{
 printf("Error from nag_zge_norm (f16uac).\n%s\n", fail.message);
 exit_status = 1;
 goto END;
}
/* Get the machine precision, using nag_machine_precision (x02ajc) */
eps = nag_machine_precision;
if (MAX(normd,norme) > pow(eps,0.8)*MAX(norma,normb))
{
 printf("The norm of the error in the reconstructed matrices is greater ",
 "than expected.\nThe Schur factorization has failed.\n");
 exit_status = 1;
 goto END;
}
/* Print details on eigenvalues */
printf("Number of sorted eigenvalues = %4"NAG_FMT"\n", sdim);
if (fail.code == NE_SCHUR_REORDER_SELECT) {
 printf("*** Note that rounding errors mean that leading eigenvalues in the ",
 "generalized\n Schur form no longer satisfy selctg = Nag_TRUE" ",
 "\n");
} else {
 printf("The selected eigenvalues are:\n");
 for (i=0;i<sdim;i++) {
 if (beta[i].re != 0.0 || beta[i].im != 0.0) {
 z = nag_complex_divide(alpha[i], beta[i]);
 printf("%3"NAG_FMT" (%13.4e, %13.4e)\n", i+1, z.re, z.im);
 } else {
 printf("\n");
 }
 }
else
 printf("%3"NAG_FMT" Eigenvalue is infinite
", i + 1);
}

abnorm = sqrt(pow(norma, 2) + pow(normb, 2));
tol = eps*abnorm;

if (sense==Nag_RCondEigVals || sense==Nag_RCondBoth) {
 /* Print out the reciprocal condition number and error bound */
 printf("\n");
 printf("For the selected eigenvalues,\nthe reciprocals of projection ",
"norms onto the deflating subspaces are\n");
 printf(" for left subspace, rcond = %0.1e\n for right subspace, rcond = ",
"%0.1e\n", rconde[0], rconde[1]);
 printf(" asymptotic error bound = %0.1e\n", tol / rconde[0]);
}
if (sense==Nag_RCondEigVecs || sense==Nag_RCondBoth) {
 /* Print out the reciprocal condition numbers and error bound. */
 printf("\n");
 printf("For the left and right deflating subspaces,\n");
 printf(" reciprocal condition numbers are:\n");
 printf(" for left subspace, rcond = %0.1e\n for right subspace, rcond = ",
"%0.1e\n", rcondv[0], rcondv[1]);
 printf(" approximate error bound = %0.1e\n", tol / rcondv[1]);
}

END:
NAG_FREE(a);
NAG_FREE(b);
NAG_FREE(c);
NAG_FREE(d);
NAG_FREE(e);
NAG_FREE(alpha);
NAG_FREE(beta);
NAG_FREE(vsl);
NAG_FREE(vsr);

return exit_status;
}

static Nag_Boolean NAG_CALL selctg(const Complex a, const Complex b)
{
 /* Boolean function selctg for use with nag_zggesx (f08xpc) */
 /* Returns the value Nag_TRUE if the absolute value of the eigenvalue */
 /* a/b < 6.0 */
 /* */
 return (nag_complex_abs(a) < 6.0*nag_complex_abs(b) ? Nag_TRUE : Nag_FALSE);
}

10.2 Program Data

nag_zggesx (f08xpc) Example Program Data

4 : n

Nag_LeftVecs : jobvsl
Nag_RightVecs : jobvsr
Nag_RCondBoth : sense

(-21.10,-22.50) (53.50,-50.50) (-34.50,127.50) (7.50, 0.50)
(-0.46, -7.78) (-3.50,-37.50) (-15.50, 58.50) (-10.50, -1.50)
(4.30, -5.50) (39.70,-17.10) (-68.50, 12.50) (-7.50, -3.50)
(5.50, 4.40) (14.40, 43.30) (-32.50,-46.00) (-19.00,-32.50) : A

(1.00, -5.00) (1.60, 1.20) (-3.00, 0.00) (0.00, -1.00)
(0.80, -0.60) (3.00, -5.00) (-4.00, 3.00) (-2.40, -3.20)
(1.00, 0.00) (2.40, 1.80) (-4.00, -5.00) (0.00, -3.00)
(0.00, 1.00) (-1.80, 2.40) (0.00, -4.00) (4.00, -5.00) : B
10.3 Program Results

nag_zggesx (f08xpc) Example Program Results

Matrix A

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(-21.10,-22.50)</td>
<td>(53.50,-50.50)</td>
<td>(-34.50,127.50)</td>
<td>(7.50, 0.50)</td>
</tr>
<tr>
<td>2</td>
<td>(-0.46, -7.78)</td>
<td>(-3.50,-37.50)</td>
<td>(-15.50, 58.50)</td>
<td>(-10.50, -1.50)</td>
</tr>
<tr>
<td>3</td>
<td>(4.30, -5.50)</td>
<td>(39.70,-17.10)</td>
<td>(-68.50, 12.50)</td>
<td>(-7.50, -3.50)</td>
</tr>
<tr>
<td>4</td>
<td>(5.50, 4.40)</td>
<td>(14.40, 43.30)</td>
<td>(-32.50,-46.00)</td>
<td>(-19.00,-32.50)</td>
</tr>
</tbody>
</table>

Matrix B

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(1.00,-5.00)</td>
<td>(1.60, 1.20)</td>
<td>(-3.00, 0.00)</td>
<td>(0.00, -1.00)</td>
</tr>
<tr>
<td>2</td>
<td>(0.80,-0.60)</td>
<td>(3.00, -5.00)</td>
<td>(-4.00, 3.00)</td>
<td>(-2.40, -3.20)</td>
</tr>
<tr>
<td>3</td>
<td>(1.00, 0.00)</td>
<td>(2.40, 1.80)</td>
<td>(-4.00, -5.00)</td>
<td>(0.00, -3.00)</td>
</tr>
<tr>
<td>4</td>
<td>(0.00, 1.00)</td>
<td>(-1.80, 2.40)</td>
<td>(0.00, -4.00)</td>
<td>(4.00, -5.00)</td>
</tr>
</tbody>
</table>

Number of sorted eigenvalues = 2

The selected eigenvalues are:
1 (2.0000e+00, -5.0000e+00)
2 (3.0000e+00, -1.0000e+00)

For the selected eigenvalues,
the reciprocals of projection norms onto the deflating subspaces are
for left subspace, rcond = 1.2e-01
for right subspace, rcond = 1.6e-01

asymptotic error bound = 1.9e-13

For the left and right deflating subspaces,
reciprocal condition numbers are:
for left subspace, rcond = 4.8e-01
for right subspace, rcond = 4.7e-01

approximate error bound = 4.9e-14