NAG Library Function Document
nag_dgebak (f08njc)

1 Purpose

nag_dgebak (f08njc) transforms eigenvectors of a balanced matrix to those of the original real nonsymmetric matrix.

2 Specification

```c
#include <nag.h>
#include <nagf08.h>

void nag_dgebak (Nag_OrderType order, Nag_JobType job, Nag_SideType side,
                  Integer n, Integer ilo, Integer ihi, const double scale[],
                  Integer m, double v[], Integer pdv, NagError *fail)
```

3 Description

nag_dgebak (f08njc) is intended to be used after a real nonsymmetric matrix A has been balanced by nag_dgebal (f08nhc), and eigenvectors of the balanced matrix A_{00} have subsequently been computed.

For a description of balancing, see the document for nag_dgebal (f08nhc). The balanced matrix A'' is obtained as $A'' = D P A P^T D^{-1}$, where P is a permutation matrix and D is a diagonal scaling matrix. This function transforms left or right eigenvectors as follows:

- if x is a right eigenvector of A'', $P^T D^{-1} x$ is a right eigenvector of A;
- if y is a left eigenvector of A'', $P^T D y$ is a left eigenvector of A.

4 References

None.

5 Arguments

1: order – Nag_OrderType

 Input

 On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by order = Nag_RowMajor. See Section 3.2.1.3 in the Essential Introduction for a more detailed explanation of the use of this argument.

 Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: job – Nag_JobType

 Input

 On entry: this must be the same argument job as supplied to nag_dgebal (f08nhc).

 Constraint: job = Nag_DoNothing, Nag_Permute, Nag_Scale or Nag_DoBoth.

3: side – Nag_SideType

 Input

 On entry: indicates whether left or right eigenvectors are to be transformed.

 side = Nag_LeftSide
 The left eigenvectors are transformed.
side = Nag_RightSide
 The right eigenvectors are transformed.

Constraint: side = Nag_LeftSide or Nag_RightSide.

4: n – Integer Input
 On entry: n, the number of rows of the matrix of eigenvectors.
 Constraint: n ≥ 0.

5: ilo – Integer Input
6: ihi – Integer Input
 On entry: the values ilo and ihi, as returned by nag_dgebal (f08nhc).
 Constraints:
 if n > 0, 1 ≤ ilo ≤ ihi ≤ n;
 if n = 0, ilo = 1 and ihi = 0.

7: scale[dim] – const double Input
 Note: the dimension, dim, of the array scale must be at least max(1, n).
 On entry: details of the permutations and/or the scaling factors used to balance the original real nonsymmetric matrix, as returned by nag_dgebal (f08nhc).

8: m – Integer Input
 On entry: m, the number of columns of the matrix of eigenvectors.
 Constraint: m ≥ 0.

9: v[dim] – double Input/Output
 Note: the dimension, dim, of the array v must be at least
 max(1, pdv × m) when order = Nag_ColMajor;
 max(1, n × pdv) when order = Nag_RowMajor.
 The (i, j)th element of the matrix V is stored in
 v[(j - 1) × pdv + i - 1] when order = Nag_ColMajor;
 v[(i - 1) × pdv + j - 1] when order = Nag_RowMajor.
 On entry: the matrix of left or right eigenvectors to be transformed.
 On exit: the transformed eigenvectors.

10: pdv – Integer Input
 On entry: the stride separating row or column elements (depending on the value of order) in the array v.
 Constraints:
 if order = Nag_ColMajor, pdv ≥ max(1, n);
 if order = Nag_RowMajor, pdv ≥ max(1, m).

11: fail – NagError* Input/Output
 The NAG error argument (see Section 3.6 in the Essential Introduction).
6 Error Indicators and Warnings

NE_ALLOC_FAIL
 Dynamic memory allocation failed.
 See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM
 On entry, argument \(\langle\text{value}\rangle\) had an illegal value.

NE_INT
 On entry, \(m = \langle\text{value}\rangle\).
 Constraint: \(m \geq 0\).
 On entry, \(n = \langle\text{value}\rangle\).
 Constraint: \(n \geq 0\).
 On entry, \(pdv = \langle\text{value}\rangle\).
 Constraint: \(pdv > 0\).

NE_INT_2
 On entry, \(pdv = \langle\text{value}\rangle\) and \(m = \langle\text{value}\rangle\).
 Constraint: \(pdv \geq \max(1, m)\).
 On entry, \(pdv = \langle\text{value}\rangle\) and \(n = \langle\text{value}\rangle\).
 Constraint: \(pdv \geq \max(1, n)\).

NE_INT_3
 On entry, \(n = \langle\text{value}\rangle\), \(ilo = \langle\text{value}\rangle\) and \(ihi = \langle\text{value}\rangle\).
 Constraint: if \(n > 0\), \(1 \leq ilo \leq ihi \leq n\);
 if \(n = 0\), \(ilo = 1\) and \(ihi = 0\).

NE_INTERNAL_ERROR
 An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.
 An unexpected error has been triggered by this function. Please contact NAG.
 See Section 3.6.6 in the Essential Introduction for further information.

NE_NO_LICENCE
 Your licence key may have expired or may not have been installed correctly.
 See Section 3.6.5 in the Essential Introduction for further information.

7 Accuracy
 The errors are negligible.

8 Parallelism and Performance
 nag_dgebak (f08njc) is not threaded by NAG in any implementation.
 nag_dgebak (f08njc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.
 Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this function. Please also consult the Users’ Note for your
implementation for any additional implementation-specific information.
9 Further Comments

The total number of floating-point operations is approximately proportional to nm.
The complex analogue of this function is nag_zgebak (f08nwc).

10 Example

See Section 10 in nag_dgebal (f08nhc).