NAG Library Function Document

nag_zgebrd (f08ksc)

1 Purpose
nag_zgebrd (f08ksc) reduces a complex m by n matrix to bidiagonal form.

2 Specification

```c
#include <nag.h>
#include <nagf08.h>
void nag_zgebrd (Nag_OrderType order, Integer m, Integer n, Complex a[],
              Integer pda, double d[], double e[], Complex tauq[], Complex taup[],
              NagError *fail)
```

3 Description
nag_zgebrd (f08ksc) reduces a complex m by n matrix A to real bidiagonal form B by a unitary transformation: \(A = QBP^H \), where Q and \(P^H \) are unitary matrices of order m and n respectively.

If \(m \geq n \), the reduction is given by:

\[
A = Q \begin{pmatrix} B_1 & 0 \\ 0 & 0 \end{pmatrix} P^H = Q_1 B_1 P_1^H,
\]

where \(B_1 \) is a real \(n \times n \) upper bidiagonal matrix and \(Q_1 \) consists of the first \(n \) columns of Q.

If \(m < n \), the reduction is given by

\[
A = Q \begin{pmatrix} B_1 & 0 \\ 0 & 0 \end{pmatrix} P^H = QB_1 P_1^H,
\]

where \(B_1 \) is a real \(m \times m \) lower bidiagonal matrix and \(P_1^H \) consists of the first \(m \) rows of \(P^H \).

The unitary matrices Q and P are not formed explicitly but are represented as products of elementary reflectors (see the f08 Chapter Introduction for details). Functions are provided to work with Q and P in this representation (see Section 9).

4 References

5 Arguments
1: \textbf{order} – Nag_OrderType \hspace{1cm} \textit{Input}

On entry: the \textit{order} argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by \textit{order} = Nag_RowMajor. See Section 3.2.1.3 in the Essential Introduction for a more detailed explanation of the use of this argument.

Constraint: \textit{order} = Nag_RowMajor or Nag_ColMajor.

2: \textbf{m} – Integer \hspace{1cm} \textit{Input}

On entry: \(m \), the number of rows of the matrix \(A \).

Constraint: \(m \geq 0 \).
3: \(\textbf{a} \) – Integer

\textit{Input}

\textit{On entry:} \(n \), the number of columns of the matrix \(A \).

\textit{Constraint:} \(n \geq 0 \).

4: \(\textbf{a}[\text{dim}] \) – Complex

\textit{Input/Output}

\textit{Note:} the dimension, \(\text{dim} \), of the array \(\textbf{a} \) must be at least

\[\max(1, \text{pda} \times n) \] when \(\text{order} = \text{Nag.ColMajor} \);

\[\max(1, m \times \text{pda}) \] when \(\text{order} = \text{Nag.RowMajor} \).

The \((i, j)\)th element of the matrix \(A \) is stored in

\[\textbf{a}[(j - 1) \times \text{pda} + i - 1] \] when \(\text{order} = \text{Nag.ColMajor} \);

\[\textbf{a}[(i - 1) \times \text{pda} + j - 1] \] when \(\text{order} = \text{Nag.RowMajor} \).

\textit{On entry:} the \(m \) by \(n \) matrix \(A \).

\textit{On exit:} if \(m \geq n \), the diagonal and first superdiagonal are overwritten by the upper bidiagonal matrix \(B \), elements below the diagonal are overwritten by details of the unitary matrix \(Q \) and elements above the first superdiagonal are overwritten by details of the unitary matrix \(P \).

If \(m < n \), the diagonal and first subdiagonal are overwritten by the lower bidiagonal matrix \(B \), elements below the first subdiagonal are overwritten by details of the unitary matrix \(Q \) and elements above the diagonal are overwritten by details of the unitary matrix \(P \).

5: \(\text{pda} \) – Integer

\textit{Input}

\textit{On entry:} the stride separating row or column elements (depending on the value of \(\text{order} \)) in the array \(\textbf{a} \).

\textit{Constraints:}

\[\begin{align*}
& \text{if } \text{order} = \text{Nag.ColMajor}, \quad \text{pda} \geq \max(1, m); \\
& \text{if } \text{order} = \text{Nag.RowMajor}, \quad \text{pda} \geq \max(1, n).
\end{align*} \]

6: \(\textbf{d}[\text{dim}] \) – double

\textit{Output}

\textit{Note:} the dimension, \(\text{dim} \), of the array \(\textbf{d} \) must be at least \(\max(1, \min(m, n)) \).

\textit{On exit:} the diagonal elements of the bidiagonal matrix \(B \).

7: \(\textbf{e}[\text{dim}] \) – double

\textit{Output}

\textit{Note:} the dimension, \(\text{dim} \), of the array \(\textbf{e} \) must be at least \(\max(1, \min(m, n) - 1) \).

\textit{On exit:} the off-diagonal elements of the bidiagonal matrix \(B \).

8: \(\textbf{tauq}[\text{dim}] \) – Complex

\textit{Output}

\textit{Note:} the dimension, \(\text{dim} \), of the array \(\textbf{tauq} \) must be at least \(\max(1, \min(m, n)) \).

\textit{On exit:} further details of the unitary matrix \(Q \).

9: \(\textbf{taup}[\text{dim}] \) – Complex

\textit{Output}

\textit{Note:} the dimension, \(\text{dim} \), of the array \(\textbf{taup} \) must be at least \(\max(1, \min(m, n)) \).

\textit{On exit:} further details of the unitary matrix \(P \).

10: \(\text{fail} \) – NagError *

\textit{Input/Output}

The NAG error argument (see Section 3.6 in the Essential Introduction).
6 Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM
On entry, argument \(\langle\text{value}\rangle\) had an illegal value.

NE_INT
On entry, \(m = \langle\text{value}\rangle\).
Constraint: \(m \geq 0\).
On entry, \(n = \langle\text{value}\rangle\).
Constraint: \(n \geq 0\).
On entry, \(pda = \langle\text{value}\rangle\).
Constraint: \(pda > 0\).

NE_INT_2
On entry, \(pda = \langle\text{value}\rangle\) and \(m = \langle\text{value}\rangle\).
Constraint: \(pda \geq \max(1, m)\).
On entry, \(pda = \langle\text{value}\rangle\) and \(n = \langle\text{value}\rangle\).
Constraint: \(pda \geq \max(1, n)\).

NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.
An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

7 Accuracy
The computed bidiagonal form \(B\) satisfies \(QBP^H = A + E\), where
\[\|E\|_2 \leq c(n)\epsilon\|A\|_2, \]
\(c(n)\) is a modestly increasing function of \(n\), and \(\epsilon\) is the *machine precision*.
The elements of \(B\) themselves may be sensitive to small perturbations in \(A\) or to rounding errors in the
computation, but this does not affect the stability of the singular values and vectors.

8 Parallelism and Performance
nag_zgebrd (f08ksc) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

nag_zgebrd (f08ksc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users’ Note for your implementation for any additional implementation-specific information.

9 Further Comments

The total number of real floating-point operations is approximately \(16n^2(3m - n)/3\) if \(m \geq n\) or \(16m^2(3n - m)/3\) if \(m < n\).

If \(m \gg n\), it can be more efficient to first call \texttt{nag_zgeqrf (f08asc)} to perform a \(QR\) factorization of \(A\), and then to call \texttt{nag_zgebrd (f08ksc)} to reduce the factor \(R\) to bidiagonal form. This requires approximately \(8n^2(m + n)\) floating-point operations.

If \(m \ll n\), it can be more efficient to first call \texttt{nag_zgelqf (f08avc)} to perform an \(LQ\) factorization of \(A\), and then to call \texttt{nag_zgebrd (f08ksc)} to reduce the factor \(L\) to bidiagonal form. This requires approximately \(8m^2(m + n)\) operations.

To form the unitary matrices \(P^H\) and/or \(Q\) \texttt{nag_zgebrd (f08ksc)} may be followed by calls to \texttt{nag_zungbr (f08ktc)}:

- to form the \(m\) by \(m\) unitary matrix \(Q\)
 \[
 \texttt{nag_zungbr(order,Nag_FormQ,m,m,&a,pda,tauq,&fail)}
 \]
 but note that the second dimension of the array \(a\) must be at least \(m\), which may be larger than was required by \texttt{nag_zgebrd (f08ksc)};

- to form the \(n\) by \(n\) unitary matrix \(P^H\)
 \[
 \texttt{nag_zungbr(order,Nag_FormP,n,n,&a,pda,taup,&fail)}
 \]
 but note that the first dimension of the array \(a\), specified by the argument \(pda\), must be at least \(n\), which may be larger than was required by \texttt{nag_zgebrd (f08ksc)}.

To apply \(Q\) or \(P\) to a complex rectangular matrix \(C\), \texttt{nag_zgebrd (f08ksc)} may be followed by a call to \texttt{nag_zunmbr (f08kuc)}.

The real analogue of this function is \texttt{nag_dgebrd (f08kec)}.

10 Example

This example reduces the matrix \(A\) to bidiagonal form, where

\[
A = \begin{pmatrix}
0.96 - 0.81i & -0.03 + 0.96i & -0.91 + 2.06i & -0.05 + 0.41i \\
-0.98 + 1.98i & -1.20 + 0.19i & -0.66 + 0.42i & -0.81 + 0.56i \\
0.62 - 0.46i & 1.01 + 0.02i & 0.63 - 0.17i & -1.11 + 0.60i \\
-0.37 + 0.38i & 0.19 - 0.54i & -0.98 - 0.36i & 0.22 - 0.20i \\
0.83 + 0.51i & 0.20 + 0.01i & -0.17 - 0.46i & 1.47 + 1.59i \\
1.08 - 0.28i & 0.20 - 0.12i & -0.07 + 1.23i & 0.26 + 0.26i \\
\end{pmatrix}
\]

10.1 Program Text

/* \texttt{nag_zgebrd (f08ksc)} Example Program. */
/* Copyright 2014 Numerical Algorithms Group. */
/* Mark 7, 2001. */
/*
#include <stdio.h>
#include <nag.h>
#include <nagf08.h>

int main(void)
{
 /* Scalars */
Integer i, j, m, n, pda, d_len, e_len, tauq_len, taup_len;
Integer exit_status = 0;
NagError fail;
Nag_OrderType order;
/* Arrays */
Complex *a = 0, *taup = 0, *tauq = 0;
double *d = 0, *e = 0;

#ifdef NAG_COLUMN_MAJOR
#define A(I, J) a[(J - 1) * pda + I - 1]
#else
#define A(I, J) a[(I - 1) * pda + J - 1]
#endif
order = Nag_ColMajor;
#endif
#define A(I, J) a[(I - 1) * pda + J - 1]
#endif
order = Nag_RowMajor;
#endif
INIT_FAIL(fail);
printf("nag_zgebrd (f08ksc) Example Program Results\n");

/* Skip heading in data file */
#ifdef _WIN32
scanf_s("%*[\n] ");
#else
scanf("%*[\n] ");
#endif
#ifdef _WIN32
scanf_s("%"NAG_IFMT"%"NAG_IFMT"%*[\n] ", &m, &n);
#else
scanf("%"NAG_IFMT"%"NAG_IFMT"%*[\n] ", &m, &n);
#endif
#ifdef NAG_COLUMN_MAJOR
pda = m;
#else
pda = n;
#endif
d_len = MIN(m, n);
e_len = MIN(m, n) - 1;
tauq_len = MIN(m, n);
taup_len = MIN(m, n);

/* Allocate memory */
if (!(a = NAG_ALLOC(m * n, Complex)) ||
 !(d = NAG_ALLOC(d_len, double)) ||
 !(e = NAG_ALLOC(e_len, double)) ||
 !(taup = NAG_ALLOC(tauq_len, Complex)) ||
 !(taup = NAG_ALLOC(taup_len, Complex)))
{
 printf("Allocation failure\n");
 exit_status = -1;
 goto END;
}

/* Read A from data file */
for (i = 1; i <= m; ++i)
{ for (j = 1; j <= n; ++j)
#ifdef _WIN32
 scanf_s(" (%lf , %lf)", &A(i, j).re, &A(i, j).im);
#else
 scanf(" (%lf , %lf)", &A(i, j).re, &A(i, j).im);
#endif
#endif
 scanf("%*[\n] ");
#ifdef _WIN32
 scanf_s("%*[\n] ");
#else
 scanf("%*[\n] ");
#endif

/* Reduce A to bidiagonal form */
/* nag_zgebrd (f08ksc). */
* Unitary reduction of complex general rectangular matrix
* to bidiagonal form
*/

nag_zgebrd(order, m, n, a, pda, d, e, tauq, taup, &fail);
if (fail.code != NE_NOERROR)
{
 printf("Error from nag_zgebrd (f08ksc).\n%s\n", fail.message);
 exit_status = 1;
 goto END;
}

/* Print bidiagonal form */
printf("\nDiagonal\n");
for (i = 1; i <= MIN(m, n); ++i)
 printf("%9.4f%s", d[i-1], i%8 == 0?"\n": "");
if (m >= n)
 printf("\nSuper-diagonal\n");
else
 printf("\nSub-diagonal\n");
for (i = 1; i <= MIN(m, n) - 1; ++i)
 printf("%9.4f%s", e[i-1], i%8 == 0?"\n": "");
printf("\n");

END:
NAG_FREE(a);
NAG_FREE(d);
NAG_FREE(e);
NAG_FREE(tauq);
NAG_FREE(taup);

return exit_status;

10.2 Program Data

nag_zgebrd (f08ksc) Example Program Data

VALUES OF M AND N

<table>
<thead>
<tr>
<th>Value</th>
<th>Value</th>
<th>Value</th>
<th>Value</th>
<th>Value</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.96</td>
<td>-0.81</td>
<td>-0.03</td>
<td>0.96</td>
<td>-0.91</td>
<td>2.06</td>
</tr>
<tr>
<td>-0.98</td>
<td>1.98</td>
<td>-1.20</td>
<td>0.19</td>
<td>-0.66</td>
<td>0.42</td>
</tr>
<tr>
<td>0.62</td>
<td>-0.46</td>
<td>1.01</td>
<td>0.02</td>
<td>0.63</td>
<td>-0.17</td>
</tr>
<tr>
<td>-0.37</td>
<td>0.38</td>
<td>0.19</td>
<td>-0.54</td>
<td>-0.98</td>
<td>-0.36</td>
</tr>
<tr>
<td>0.83</td>
<td>0.51</td>
<td>0.20</td>
<td>0.01</td>
<td>-0.17</td>
<td>-0.46</td>
</tr>
<tr>
<td>1.08</td>
<td>-0.28</td>
<td>0.20</td>
<td>-0.12</td>
<td>-0.07</td>
<td>1.23</td>
</tr>
</tbody>
</table>

10.3 Program Results

nag_zgebrd (f08ksc) Example Program Results

DIAGONAL

<table>
<thead>
<tr>
<th>Value</th>
<th>Value</th>
<th>Value</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3.0870</td>
<td>2.0660</td>
<td>1.8731</td>
<td>2.0022</td>
</tr>
</tbody>
</table>

SUPER-DIAGONAL

<table>
<thead>
<tr>
<th>Value</th>
<th>Value</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1126</td>
<td>1.2628</td>
<td>-1.6126</td>
</tr>
</tbody>
</table>