NAG Library Function Document

nag_zgesvd (f08kpc)

1 Purpose
nag_zgesvd (f08kpc) computes the singular value decomposition (SVD) of a complex \(m \) by \(n \) matrix \(A \), optionally computing the left and/or right singular vectors.

2 Specification

```c
#include <nag.h>
#include <nagf08.h>

void nag_zgesvd (Nag_OrderType order, Nag_ComputeUType jobu,
                Nag_ComputeVTType jobvt, Integer m, Integer n, Complex a[],
                Integer pda, double s[], Complex u[], Integer pdu,
                Complex vt[], Integer pdvt, double rwork[], NagError *fail)
```

3 Description

The SVD is written as

\[A = U \Sigma V^H, \]

where \(\Sigma \) is an \(m \) by \(n \) matrix which is zero except for its \(\min(m,n) \) diagonal elements, \(U \) is an \(m \) by \(m \) unitary matrix, and \(V \) is an \(n \) by \(n \) unitary matrix. The diagonal elements of \(\Sigma \) are the singular values of \(A \); they are real and non-negative, and are returned in descending order. The first \(\min(m,n) \) columns of \(U \) and \(V \) are the left and right singular vectors of \(A \).

Note that the function returns \(V^H \), not \(V \).

4 References

5 Arguments

1. `order` – Nag_OrderType

 Input

 On entry: the `order` argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by `order = Nag_RowMajor`. See Section 3.2.1.3 in the Essential Introduction for a more detailed explanation of the use of this argument.

 Constraint: `order = Nag_RowMajor` or `Nag_ColMajor`.

2. `jobu` – Nag_ComputeUType

 Input

 On entry: specifies options for computing all or part of the matrix \(U \).

 `jobu = Nag_AllU`

 All \(m \) columns of \(U \) are returned in array \(u \).
jobu = Nag_SingularVecsU
 The first min(m,n) columns of U (the left singular vectors) are returned in the array u.

jobu = Nag_Overwrite
 The first min(m,n) columns of U (the left singular vectors) are overwritten on the array a.

jobu = Nag_NotU
 No columns of U (no left singular vectors) are computed.

Constraint: jobu = Nag_AllU, Nag_SingularVecsU, Nag_Overwrite or Nag_NotU.

3: jobvt – Nag_ComputeVTType

 On entry: specifies options for computing all or part of the matrix V^H.

jobvt = Nag_AllVT
 All n rows of V^H are returned in the array vt.

jobvt = Nag_SingularVecsVT
 The first min(m,n) rows of V^H (the right singular vectors) are returned in the array vt.

jobvt = Nag_OverwriteVT
 The first min(m,n) rows of V^H (the right singular vectors) are overwritten on the array a.

jobvt = Nag_NotVT
 No rows of V^H (no right singular vectors) are computed.

Constraints:
 jobvt = Nag_AllVT, Nag_SingularVecsVT, Nag_OverwriteVT or Nag_NotVT;
 If jobu = Nag_Overwrite, jobvt cannot be Nag_OverwriteVT.

4: m – Integer

 On entry: m, the number of rows of the matrix A.

 Constraint: m ≥ 0.

5: n – Integer

 On entry: n, the number of columns of the matrix A.

 Constraint: n ≥ 0.

6: a[dim] – Complex

 Input/Output

 Note: the dimension, dim, of the array a must be at least
 \[\max(1, pda \times n) \] when order = Nag_ColMajor;
 \[\max(1, m \times pda) \] when order = Nag_RowMajor.

 The (i,j)th element of the matrix A is stored in
 \[a[(j-1) \times pda + i - 1] \] when order = Nag_ColMajor;
 \[a[(i-1) \times pda + j - 1] \] when order = Nag_RowMajor.

 On entry: the m by n matrix A.

 On exit: if jobu = Nag_Overwrite, a is overwritten with the first min(m,n) columns of U (the left singular vectors, stored column-wise).

 If jobvt = Nag_OverwriteVT, a is overwritten with the first min(m,n) rows of V^H (the right singular vectors, stored row-wise).

 If jobu ≠ Nag_Overwrite and jobvt ≠ Nag_OverwriteVT, the contents of a are destroyed.
7: \textbf{pda} -- Integer

\textit{Input}

\textit{On entry:} the stride separating row or column elements (depending on the value of \textbf{order}) in the array \textbf{a}.

\textit{Constraints:}

\begin{align*}
\text{if } \textbf{order} = \text{Nag_ColMajor}, & \quad \textbf{pda} \geq \max(1, m); \\
\text{if } \textbf{order} = \text{Nag_RowMajor}, & \quad \textbf{pda} \geq \max(1, n).
\end{align*}

8: \textbf{s}[\text{dim}] -- double

\textit{Output}

\textit{Note:} the dimension, \textit{dim}, of the array \textbf{s} must be at least \(\max(1, \min(m, n))\).

\textit{On exit:} the singular values of \(A\), sorted so that \(s[i-1] \geq s[i]\).

9: \textbf{u}[\text{dim}] -- Complex

\textit{Output}

\textit{Note:} the dimension, \textit{dim}, of the array \textbf{u} must be at least

\begin{align*}
\max(1, \textbf{pdu} \times m) & \quad \text{when } \textbf{jobu} = \text{Nag_AllU}; \\
\max(1, \textbf{pdu} \times \min(m, n)) & \quad \text{when } \textbf{jobu} = \text{Nag_SingularVecsU} \text{ and } \textbf{order} = \text{Nag_ColMajor}; \\
\max(1, m \times \textbf{pdu}) & \quad \text{when } \textbf{jobu} = \text{Nag_SingularVecsU} \text{ and } \textbf{order} = \text{Nag_RowMajor}; \\
\max(1, m) & \quad \text{otherwise}.
\end{align*}

The \((i, j)\)th element of the matrix \(U\) is stored in

\begin{align*}
\textbf{u}[j - 1 \times \textbf{pdu} + i - 1] & \quad \text{when } \textbf{order} = \text{Nag_ColMajor}; \\
\textbf{u}[i - 1 \times \textbf{pdu} + j - 1] & \quad \text{when } \textbf{order} = \text{Nag_RowMajor}.
\end{align*}

\textit{On exit:} if \textbf{jobu} = \text{Nag_AllU}, \textbf{u} contains the \(m\) by \(m\) unitary matrix \(U\).

If \textbf{jobu} = \text{Nag_SingularVecsU}, \textbf{u} contains the first \(\min(m, n)\) columns of \(U\) (the left singular vectors, stored column-wise).

If \textbf{jobu} = \text{Nag_NotU} or \text{Nag_Overwrite}, \textbf{u} is not referenced.

10: \textbf{pdu} -- Integer

\textit{Input}

\textit{On entry:} the stride separating row or column elements (depending on the value of \textbf{order}) in the array \textbf{u}.

\textit{Constraints:}

\begin{align*}
\text{if } \textbf{order} = \text{Nag_ColMajor}, & \quad \\
\text{if } \textbf{jobu} = \text{Nag_AllU}, & \quad \textbf{pdu} \geq \max(1, m); \\
\text{if } \textbf{jobu} = \text{Nag_SingularVecsU}, & \quad \textbf{pdu} \geq \max(1, m); \\
\text{otherwise, } & \quad \textbf{pdu} \geq 1.; \\
\text{if } \textbf{order} = \text{Nag_RowMajor}, & \quad \\
\text{if } \textbf{jobu} = \text{Nag_AllU}, & \quad \textbf{pdu} \geq \max(1, m); \\
\text{if } \textbf{jobu} = \text{Nag_SingularVecsU}, & \quad \textbf{pdu} \geq \max(1, \min(m, n)); \\
\text{otherwise, } & \quad \textbf{pdu} \geq 1.. \end{align*}

11: \textbf{vt}[\text{dim}] -- Complex

\textit{Output}

\textit{Note:} the dimension, \textit{dim}, of the array \textbf{vt} must be at least

\begin{align*}
\max(1, \textbf{pdvt} \times n) & \quad \text{when } \textbf{jobvt} = \text{Nag_AllVT}; \\
\max(1, \textbf{pdvt} \times n) & \quad \text{when } \textbf{jobvt} = \text{Nag_SingularVecsVT} \text{ and } \textbf{order} = \text{Nag_ColMajor}; \\
\max(1, \min(m, n) \times \textbf{pdvt}) & \quad \text{when } \textbf{jobvt} = \text{Nag_SingularVecsVT} \text{ and } \\
\textbf{order} = \text{Nag_RowMajor}; \\
\max(1, \min(m, n)) & \quad \text{otherwise}.
\end{align*}

The \((i, j)\)th element of the matrix is stored in

\begin{align*}
\textbf{vt}[(j - 1) \times \textbf{pdvt} + i - 1] & \quad \text{when } \textbf{order} = \text{Nag_ColMajor}; \\
\textbf{vt}[(i - 1) \times \textbf{pdvt} + j - 1] & \quad \text{when } \textbf{order} = \text{Nag_RowMajor}.
\end{align*}
On exit: if jobvt = Nag_AllVT, vt contains the n by n unitary matrix \(V^H \).

If jobvt = Nag_SingularVecsVT, vt contains the first \(\min(m, n) \) rows of \(V^H \) (the right singular vectors, stored row-wise).

If jobvt = Nag_NotVT or Nag_OverwriteVT, vt is not referenced.

12: pdvt – Integer

Input

On entry: the stride separating row or column elements (depending on the value of order) in the array vt.

Constraints:

if order = Nag_ColMajor,
 if jobvt = Nag_AllVT, pdvt ≥ max(1, n);
 if jobvt = Nag_SingularVecsVT, pdvt ≥ max(1, min(m, n));
 otherwise pdvt ≥ 1.;
if order = Nag_RowMajor,
 if jobvt = Nag_AllVT, pdvt ≥ max(1, n);
 if jobvt = Nag_SingularVecsVT, pdvt ≥ max(1, n);
 otherwise pdvt ≥ 1..

13: rwork[\min(m, n)] – double

Output

On exit: if fail.code = NE_CONVERGENCE, RWORK(1 : \min(m, n) – 1) (using the notation described in Section 3.2.1.4 in the Essential Introduction) contains the unconverged superdiagonal elements of an upper bidiagonal matrix \(B \) whose diagonal is in \(S \) (not necessarily sorted). \(B \) satisfies \(A = UBV^T \), so it has the same singular values as \(A \), and singular vectors related by \(U \) and \(V^T \).

14: fail – NagError*

Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM

On entry, argument \(\langle value \rangle \) had an illegal value.

NE_CONVERGENCE

If nag_zgesvd (f08kpc) did not converge, fail.errnum specifies how many superdiagonals of an intermediate bidiagonal form did not converge to zero.

NE_ENUM_INT_2

On entry, jobu = \(\langle value \rangle \), pdu = \(\langle value \rangle \) and m = \(\langle value \rangle \).

Constraint: if jobu = Nag_AllU, pdu ≥ max(1, m);
if jobu = Nag_SingularVecsU, pdu ≥ max(1, m);
otherwise pdu ≥ 1.

On entry, jobvt = \(\langle value \rangle \), pdvt = \(\langle value \rangle \), n = \(\langle value \rangle \).

Constraint: if jobvt = Nag_AllVT, pdvt ≥ max(1, n);
if jobvt = Nag_SingularVecsVT, pdvt ≥ max(1, n);
otherwise pdvt ≥ 1.
On entry, jobu = ⟨value⟩, pdu = ⟨value⟩, m = ⟨value⟩ and n = ⟨value⟩.
Constraint: if jobu = Nag_AllU, pdu ≥ max(1, m);
if jobu = Nag_SingularVecsU, pdu ≥ max(1, min(m, n));
otherwise pdu ≥ 1.

On entry, jobvt = ⟨value⟩, pdvt = ⟨value⟩, m = ⟨value⟩ and n = ⟨value⟩.
Constraint: if jobvt = Nag_AllVT, pdvt ≥ max(1, n);
if jobvt = Nag_SingularVecsVT, pdvt ≥ max(1, min(m, n));
otherwise pdvt ≥ 1.

On entry, m = ⟨value⟩.
Constraint: m ≥ 0.

On entry, n = ⟨value⟩.
Constraint: n ≥ 0.

On entry, pda = ⟨value⟩.
Constraint: pda > 0.

On entry, pdu = ⟨value⟩.
Constraint: pdu > 0.

On entry, pdvt = ⟨value⟩.
Constraint: pdvt > 0.

On entry, pda = ⟨value⟩ and m = ⟨value⟩.
Constraint: pda ≥ max(1, m).

On entry, pda = ⟨value⟩ and n = ⟨value⟩.
Constraint: pda ≥ max(1, n).

An internal error has occurred in this function. Check the function call and any array sizes. If the
invoke is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

The computed singular value decomposition is nearly the exact singular value decomposition for a
nearby matrix (A + E), where

||E||_2 = O(\epsilon)||A||_2,

and \epsilon is the machine precision. In addition, the computed singular vectors are nearly orthogonal to
working precision. See Section 4.9 of Anderson et al. (1999) for further details.

nag_zgesvd (f08kpc) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.
nag_zgesvd (f08kpc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users’ Note for your implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately proportional to mn^2 when $m > n$ and m^2n otherwise.

The singular values are returned in descending order.

The real analogue of this function is nag_dgesvd (f08kbc).

10 Example

This example finds the singular values and left and right singular vectors of the 6 by 4 matrix

$$A = \begin{pmatrix}
0.96 - 0.81i & -0.03 + 0.96i & -0.91 + 2.06i & -0.05 + 0.41i \\
-0.98 + 1.98i & -1.20 + 0.19i & -0.66 + 0.42i & -0.81 + 0.56i \\
0.62 - 0.46i & 1.01 + 0.02i & 0.63 - 0.17i & -1.11 + 0.60i \\
-0.37 + 0.38i & 0.19 - 0.54i & -0.98 - 0.36i & 0.22 - 0.20i \\
0.83 + 0.51i & 0.20 + 0.01i & -0.17 - 0.46i & 1.47 + 1.59i \\
1.08 - 0.28i & 0.20 - 0.12i & -0.07 + 1.23i & 0.26 + 0.26i
\end{pmatrix},$$

together with approximate error bounds for the computed singular values and vectors.

The example program for nag_zgesdd (f08krc) illustrates finding a singular value decomposition for the case $m \leq n$.

10.1 Program Text

/* nag_zgesvd (f08kpc) Example Program. */
/* Copyright 2014 Numerical Algorithms Group. */
/* Mark 23, 2011. */

#include <stdio.h>
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
#include <nagf16.h>
#include <nagx02.h>
#include <nagx04.h>
#include <naga02.h>

int main(void)
{
 /* Scalars */
 Complex alpha, beta;
 double eps, norm, serrbd;
 Integer exit_status = 0, i, j, m, n, lda, ldvt;

 /* Arrays */
 Complex *a = 0, *d = 0, *u = 0, *vt = 0;
 double *rcondu = 0, *rcondv = 0, *s = 0, *uerrbd = 0, *verrbd = 0;
 double *rwork = 0;

 /* Nag Types */
NagError fail;
Nag_OrderType order;
#endif NAG_COLUMN_MAJOR
#define A(I, J) a[(J - 1) * pda + I - 1]
order = Nag_ColMajor;
#else
#define A(I, J) a[(I - 1) * pda + J - 1]
order = Nag_RowMajor;
#endif
INIT_FAIL(fail);
printf("nag_zgesvd (f08kpc) Example Program Results\n\n");
/* Skip heading in data file */
#endif _WIN32
scanf_s("%*[\n"]);
#else
scanf("%*[\n"]);
#endif _WIN32
scanf_s("%"NAG_IFMT"%"NAG_IFMT"%*[\n"]", &m, &n);
#else
scanf("%"NAG_IFMT"%"NAG_IFMT"%*[\n"]", &m, &n);
#endif
if (m<0 || n<0)
{
 printf("Invalid m or n\n");
 exit_status = 1;
 goto END;
}
/* Allocate memory: these assume that A is overwritten by U, and
* all of VT is required.
*/
if (!(a = NAG_ALLOC(m * n, Complex)) ||
 !(d = NAG_ALLOC(m * n, Complex)) ||
 !(u = NAG_ALLOC(1, Complex)) ||
 !(vt = NAG_ALLOC(MIN(m, n) * n, Complex)) ||
 !(rcondu = NAG_ALLOC(MIN(m, n), double)) ||
 !(rcondv = NAG_ALLOC(MIN(m, n), double)) ||
 !(uerrbd = NAG_ALLOC(MIN(m, n), double)) ||
 !(verrbd = NAG_ALLOC(MIN(m, n), double)) ||
 !(rwork = NAG_ALLOC(MIN(m, n), double)))
{
 printf("Allocation failure\n");
 exit_status = -1;
 goto END;
}
#ifndef NAG_COLUMN_MAJOR
pda = m;
#else
pda = n;
#endif
scanf_s("%*[\n"]);
/* Read the m by n matrix A from data file. */
for (i = 1; i <= m; ++i)
 for (j = 1; j <= n; ++j)
 #ifndef _WIN32
 scanf_s(" (%lf , %lf)", &A(i, j).re, &A(i, j).im);
 #else
 scanf(" (%lf , %lf)", &A(i, j).re, &A(i, j).im);
 #endif
 #ifndef _WIN32
 scanf("%*[\n"]");
 #else
 scanf("%*[\n"]");
 #endif

Mark 25

f08 – Least-squares and Eigenvalue Problems (LAPACK)
f08kpc

f08kpc.7

```
```c
#else
 scanf("%*[\n"]);
#endif

/* Copy A to D: nag_zge_copy (f16tfc),
 * Complex valued general matrix copy.
*/
 nag_zge_copy(order, Nag_NoTrans, m, n, a, pda, d, pdd, &fail);

/* nag_gen_complx_mat_print_comp (x04dbc): Print matrix A */
 fflush(stdout);
 nag_gen_complx_mat_print_comp(order, Nag_GeneralMatrix, Nag_NonUnitDiag, m,
 n, a, pda, Nag_BracketForm, "%7.4f", "Matrix A",
 Nag_IntegerLabels, 0, Nag_IntegerLabels, 0, 80,
 0, 0, &fail);

 printf("\n");
 if (fail.code != NE_NOERROR)
 {
 printf("Error from nag_gen_complx_mat_print_comp (x04dbc).
 fail.message);
 exit_status = 1;
 goto END;
 }

 /* nag_zgesvd (f08kpc)
 * Compute the singular values and left and right singular vectors
 * of A (A = U*S*(V**H), m.ge.n)
 */
 nag_zgesvd(order, Nag_Overwrite, Nag_AllVT, m, n, a, pda, s, u, pdu, vt, pdvt,
 rwork, &fail);
 if (fail.code != NE_NOERROR)
 {
 printf("Error from nag_zgesvd (f08kpc).
 fail.message);
 exit_status = 1;
 goto END;
 }

 /* Reconstruct A from its decomposition and subtract from original A:
 * first, A <- U(A)*S, then D <- D - U*S*V^H using
 * nag_zgemm (f16zac).
 */
 for(i = 1; i <= m; i++)
 for(j = 1; j <= MIN(m,n); j++)
 A[i, j].re *= s[j-1], A[i, j].im *= s[j-1];
 alpha = nag_complex(-1.0,0.0);
 beta = nag_complex(1.0,0.0);
 nag_zgemm(order, Nag_NoTrans, Nag_NoTrans, m, n, n, alpha, a, pda, vt, pdvt,
 beta, d, pdd, &fail);
 if (fail.code != NE_NOERROR)
 {
 printf("Error from nag_zgemm (f16zac).
 fail.message);
 exit_status = 1;
 goto END;
 }

 /* Find norm of difference matrix D and print warning if it is too large:
 * nag_zge_norm (f16ucac) using one-norm.
 */
 nag_zge_norm(order, Nag_OneNorm, m, n, d, pdd, &norm, &fail);
 if (fail.code != NE_NOERROR)
 {
 printf("Error from nag_zge_norm (f16ucac).
 fail.message);
 exit_status = 1;
 goto END;
 }

 /* Get the machine precision, using nag_machine_precision (x02ajc) */
 eps = nag_machine_precision;
 if (norm>pow(eps,0.8))
 {
 printf("Norm of A-(U*S*V^H) is much greater than 0.\n"
```
/* Schur factorization has failed.
*/ exit_status = 1; goto END;
}

/* Print singular values and error estimates on values and vectors. */
printf("\nSingular values\n");
for (i = 0; i < n; ++i) printf("%10.4f%s", s[i], i%8 == 7?"\n":" ");
printf("\n\n");

/* Approximate error bound for the computed singular values. */
* Note that for the 2-norm, s[0] = norm(A).
*/
serrbd = eps * s[0];

/* Call nag_ddisna (f08flc) to estimate reciprocal condition numbers for the
* singular vectors. */
nag_ddisna(Nag_LeftSingVecs, m, n, s, rcondu, &fail);
nag_ddisna(Nag_RightSingVecs, m, n, s, rcondv, &fail);

/* Compute the error estimates for the singular vectors */
for (i = 0; i < n; ++i)
{
    uerrbd[i] = serrbd / rcondu[i];
    verrbd[i] = serrbd / rcondv[i];
}
printf("Error estimate for the singular values\n\n%11.1e\n", serrbd);

printf("\nError estimates for the left singular vectors\n");
for (i = 0; i < n; ++i) printf("%10.1e%s", uerrbd[i], i%6 == 5?"\n":" ");
printf("\n
Error estimates for the right singular vectors\n");
for (i = 0; i < n; ++i) printf("%10.1e%s", verrbd[i], i%6 == 5?"\n":" ");
printf("\n
\nEND:
NAG_FREE(a);
NAG_FREE(d);
NAG_FREE(u);
NAG_FREE(vt);
NAG_FREE(rcondu);
NAG_FREE(rcondv);
NAG_FREE(s);
NAG_FREE(uerrbd);
NAG_FREE(verrbd);
NAG_FREE(rwork);

return exit_status;
}
#endif A

10.2 Program Data

nag_zgesvd (f08kpc) Example Program Data

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>4</td>
</tr>
</tbody>
</table>

:Values of M and N

( 0.96, -0.81) ( -0.03, 0.96) ( -0.91, 2.06) ( -0.05, 0.41)
( -0.98, 1.98) ( -1.20, 0.19) ( -0.66, 0.42) ( -0.81, 0.56)
( 0.62, -0.46) ( 1.01, 0.02) ( 0.63, -0.17) ( -1.11, 0.60)
( -0.37, 0.38) ( 0.19, -0.54) ( -0.98, -0.36) ( 0.22, -0.20)
( 0.83, 0.51) ( 0.20, 0.01) ( -0.17, -0.46) ( 1.47, 1.59)
( 1.08, -0.28) ( 0.20, -0.12) ( -0.07, 1.23) ( 0.26, 0.26)

:End of matrix A
10.3 Program Results

nag_zgesvd (f08kpc) Example Program Results

Matrix A

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(0.9600, -0.8100)</td>
<td>(-0.0300, 0.9600)</td>
<td>(-0.9100, 2.0600)</td>
<td>(-0.0500, 0.4100)</td>
</tr>
<tr>
<td>2</td>
<td>(-0.9800, 1.9800)</td>
<td>(-1.2000, 0.1900)</td>
<td>(-0.6600, 0.4200)</td>
<td>(-0.8100, 0.5600)</td>
</tr>
<tr>
<td>3</td>
<td>(0.6200, -0.4600)</td>
<td>(1.0100, 0.0200)</td>
<td>(0.6300, -0.1700)</td>
<td>(-1.1100, 0.6000)</td>
</tr>
<tr>
<td>4</td>
<td>(-0.3700, 0.3800)</td>
<td>(0.1900, -0.5400)</td>
<td>(-0.9800, -0.3600)</td>
<td>(0.2200, -0.2000)</td>
</tr>
<tr>
<td>5</td>
<td>(0.8300, 0.5100)</td>
<td>(0.2000, 0.0100)</td>
<td>(-0.1700, -0.4600)</td>
<td>(1.4700, 1.5900)</td>
</tr>
<tr>
<td>6</td>
<td>(1.0800, -0.2800)</td>
<td>(0.2000, -0.1200)</td>
<td>(-0.0700, 1.2300)</td>
<td>(0.2600, 0.2600)</td>
</tr>
</tbody>
</table>

Singular values

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.9994</td>
</tr>
<tr>
<td>2</td>
<td>3.0003</td>
</tr>
<tr>
<td>3</td>
<td>1.9944</td>
</tr>
<tr>
<td>4</td>
<td>0.9995</td>
</tr>
</tbody>
</table>

Error estimate for the singular values

4.4e-16

Error estimates for the left singular vectors

4.4e-16 4.4e-16 4.5e-16 4.5e-16

Error estimates for the right singular vectors

4.4e-16 4.4e-16 4.5e-16 4.5e-16