1 Purpose

nag_dormbr (f08kge) multiplies an arbitrary real m by n matrix C by one of the real orthogonal matrices Q or P which were determined by nag_dgebrd (f08kec) when reducing a real matrix to bidiagonal form.

2 Specification

```c
#include <nag.h>
#include <nagf08.h>
void nag_dormbr (Nag_OrderType order, Nag_VectType vect, Nag_SideType side,
                Nag_TransType trans, Integer m, Integer n, Integer k,
                const double a[], Integer pda, const double tau[],
                double c[], Integer pdc, NagError *fail)
```

3 Description

nag_dormbr (f08kge) is intended to be used after a call to nag_dgebrd (f08kec), which reduces a real rectangular matrix A to bidiagonal form B by an orthogonal transformation: $A = QBP^T$. nag_dgebrd (f08kec) represents the matrices Q and P^T as products of elementary reflectors.

This function may be used to form one of the matrix products

$$QC, Q^T C, CQ, CQ^T, PC, P^T C, CP$$ or $$CP^T,$$

overwriting the result on C (which may be any real rectangular matrix).

4 References

5 Arguments

Note: in the descriptions below, r denotes the order of Q or P^T: if side = Nag_LeftSide, $r = m$ and if side = Nag_RightSide, $r = n$.

1: **order** – Nag_OrderType

 Input

 On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by order = Nag_RowMajor. See Section 3.2.1.3 in the Essential Introduction for a more detailed explanation of the use of this argument.

 Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: **vect** – Nag_VectType

 Input

 On entry: indicates whether Q or Q^T or P or P^T is to be applied to C.

 vect = Nag_ApplyQ
 Q or Q^T is applied to C.

Mark 25
vect = Nag_ApplyP

\(P \) or \(P^T \) is applied to \(C \).

Constraint: vect = Nag_ApplyQ or Nag_ApplyP.

3: \textbf{side} – Nag_SideType \hspace{1cm} \textit{Input}

On entry: indicates how \(Q \) or \(Q^T \) or \(P \) or \(P^T \) is to be applied to \(C \).

\textbf{side} = Nag_LeftSide

\(Q \) or \(Q^T \) or \(P \) or \(P^T \) is applied to \(C \) from the left.

\textbf{side} = Nag_RightSide

\(Q \) or \(Q^T \) or \(P \) or \(P^T \) is applied to \(C \) from the right.

Constraint: side = Nag_LeftSide or Nag_RightSide.

4: \textbf{trans} – Nag_TransType \hspace{1cm} \textit{Input}

On entry: indicates whether \(Q \) or \(P \) or \(Q^T \) or \(P^T \) is to be applied to \(C \).

\textbf{trans} = Nag_NoTrans

\(Q \) or \(P \) is applied to \(C \).

\textbf{trans} = Nag_Trans

\(Q^T \) or \(P^T \) is applied to \(C \).

Constraint: trans = Nag_NoTrans or Nag_Trans.

5: \textbf{m} – Integer \hspace{1cm} \textit{Input}

On entry: \(m \), the number of rows of the matrix \(C \).

Constraint: \(m \geq 0 \).

6: \textbf{n} – Integer \hspace{1cm} \textit{Input}

On entry: \(n \), the number of columns of the matrix \(C \).

Constraint: \(n \geq 0 \).

7: \textbf{k} – Integer \hspace{1cm} \textit{Input}

On entry: if \textbf{vect} = Nag_ApplyQ, the number of columns in the original matrix \(A \).

If \textbf{vect} = Nag_ApplyP, the number of rows in the original matrix \(A \).

Constraint: \(k \geq 0 \).

8: \textbf{a}[\textit{dim}] – const double \hspace{1cm} \textit{Input}

Note: the dimension, \(\textit{dim} \), of the array \(\textbf{a} \) must be at least

\[
\max(1, \text{\textbf{pda}} \times \min(r, k)) \text{ when } \textbf{vect} = \text{Nag_ApplyQ and } \textbf{order} = \text{Nag_ColMajor};
\]

\[
\max(1, r \times \text{\textbf{pda}}) \text{ when } \textbf{vect} = \text{Nag_ApplyQ and } \textbf{order} = \text{Nag_RowMajor};
\]

\[
\max(1, \text{\textbf{pda}} \times r) \text{ when } \textbf{vect} = \text{Nag_ApplyP and } \textbf{order} = \text{Nag_ColMajor};
\]

\[
\max(1, \min(r, k) \times \text{\textbf{pda}}) \text{ when } \textbf{vect} = \text{Nag_ApplyP and } \textbf{order} = \text{Nag_RowMajor}.
\]

On entry: details of the vectors which define the elementary reflectors, as returned by \texttt{nag_dgebrd} (f08kec).

9: \textbf{pda} – Integer \hspace{1cm} \textit{Input}

On entry: the stride separating row or column elements (depending on the value of \textbf{order}) in the array \(\textbf{a} \).
Constraints:

if \(\text{order} = \text{Nag_ColMajor}\),

if \(\text{vect} = \text{Nag_ApplyQ}\), \(\text{pda} \geq \max(1, r)\);
if \(\text{vect} = \text{Nag_ApplyP}\), \(\text{pda} \geq \max(1, \min(r, k))\);
if \(\text{order} = \text{Nag_RowMajor}\),

if \(\text{vect} = \text{Nag_ApplyQ}\), \(\text{pda} \geq \max(1, \min(r, k))\);
if \(\text{vect} = \text{Nag_ApplyP}\), \(\text{pda} \geq \max(1, r)\).

10: \(\tau [\dim] \rightarrow \text{const double} \quad \text{Input}\)

Note: the dimension, \(\dim\), of the array \(\tau\) must be at least \(\max(1, \min(r, k))\).

On entry: further details of the elementary reflectors, as returned by \text{nag_dgebrd} (f08kec) in its argument \(\tau q\) if \(\text{vect} = \text{Nag_ApplyQ}\), or in its argument \(\tau p\) if \(\text{vect} = \text{Nag_ApplyP}\).

11: \(c[\dim] \rightarrow \text{double} \quad \text{Input/Output}\)

Note: the dimension, \(\dim\), of the array \(c\) must be at least

\[\max(1, \text{pdc} \times n) \] when \(\text{order} = \text{Nag_ColMajor}\);
\[\max(1, m \times \text{pdc}) \] when \(\text{order} = \text{Nag_RowMajor}\).

The \((i, j)\)th element of the matrix \(C\) is stored in

\(c[(j-1) \times \text{pdc} + i - 1]\) when \(\text{order} = \text{Nag_ColMajor}\);
\(c[(i-1) \times \text{pdc} + j - 1]\) when \(\text{order} = \text{Nag_RowMajor}\).

On exit: the matrix \(C\).

On exit: \(c\) is overwritten by \(QC\) or \(Q^T C\) or \(CQ\) or \(C^T Q\) or \(PC\) or \(P^T C\) or \(CP\) or \(C^T P\) as specified by \(\text{vect}\), \(\text{side}\) and \(\text{trans}\).

12: \(\text{pdc} \rightarrow \text{Integer} \quad \text{Input}\)

On entry: the stride separating row or column elements (depending on the value of \(\text{order}\)) in the array \(c\).

Constraints:

if \(\text{order} = \text{Nag_ColMajor}\), \(\text{pdc} \geq \max(1, m)\);
if \(\text{order} = \text{Nag_RowMajor}\), \(\text{pdc} \geq \max(1, n)\).

13: \(\text{fail} \rightarrow \text{NagError}\ \ast \quad \text{Input/Output}\)

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM

On entry, argument \langle value \rangle had an illegal value.

NE_ENUM_INT_2

On entry, \(\text{vect} = \langle value \rangle\), \(\text{pda} = \langle value \rangle\), \(k = \langle value \rangle\).
Constraint: if \(\text{vect} = \text{Nag_ApplyQ}\), \(\text{pda} \geq \max(1, \min(r, k))\);
if \(\text{vect} = \text{Nag_ApplyP}\), \(\text{pda} \geq \max(1, r)\).
On entry, vect = \langle value \rangle, pda = \langle value \rangle and k = \langle value \rangle.
Constraint: if vect = Nag_ApplyQ, pda \geq \max(1, r);
if vect = Nag_ApplyP, pda \geq \max(1, \min(r, k)).

NE_INT
On entry, k = \langle value \rangle.
Constraint: k \geq 0.

On entry, m = \langle value \rangle.
Constraint: m \geq 0.

On entry, n = \langle value \rangle.
Constraint: n \geq 0.

On entry, pda = \langle value \rangle.
Constraint: pda > 0.

On entry, pdc = \langle value \rangle.
Constraint: pdc > 0.

NE_INT_2
On entry, pdc = \langle value \rangle and m = \langle value \rangle.
Constraint: pdc \geq \max(1, m).

On entry, pdc = \langle value \rangle and n = \langle value \rangle.
Constraint: pdc \geq \max(1, n).

NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

7 Accuracy
The computed result differs from the exact result by a matrix E such that
\[\|E\|_2 = O(\epsilon)\|C\|_2, \]
where \(\epsilon \) is the machine precision.

8 Parallelism and Performance
nag_dormbr (f08kgc) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.

nag_dormbr (f08kgc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users’ Note for your implementation for any additional implementation-specific information.
9 Further Comments

The total number of floating-point operations is approximately

\[
\begin{align*}
\text{if } \text{side} = \text{Nag_LeftSide} \text{ and } m \geq k, 2nk(2m - k); \\
\text{if } \text{side} = \text{Nag_RightSide} \text{ and } n \geq k, 2mk(2n - k); \\
\text{if } \text{side} = \text{Nag_LeftSide} \text{ and } m < k, 2m^2n; \\
\text{if } \text{side} = \text{Nag_RightSide} \text{ and } n < k, 2mn^2,
\end{align*}
\]

where \(k \) is the value of the argument \(k \).

The complex analogue of this function is nag_zunmbr (f08kuc).

10 Example

For this function two examples are presented. Both illustrate how the reduction to bidiagonal form of a matrix \(A \) may be preceded by a \(QR \) or \(LQ \) factorization of \(A \).

In the first example, \(m > n \), and

\[
A = \begin{pmatrix}
-0.57 & -1.28 & -0.39 & 0.25 \\
-1.93 & 1.08 & -0.31 & -2.14 \\
2.30 & 0.24 & 0.40 & -0.35 \\
-1.93 & 0.64 & -0.66 & 0.08 \\
0.15 & 0.30 & 0.15 & -2.13 \\
-0.02 & 1.03 & -1.43 & 0.50
\end{pmatrix}
\]

The function first performs a \(QR \) factorization of \(A \) as \(A = QR \) and then reduces the factor \(R \) to bidiagonal form \(B: R = QbBP^T \). Finally it forms \(Q \) and calls nag_dormbr (f08kgc) to form \(Q = Q_aQ_b \).

In the second example, \(m < n \), and

\[
A = \begin{pmatrix}
-5.42 & 3.28 & -3.68 & 0.27 & 2.06 & 0.46 \\
-1.65 & -3.40 & -3.20 & -1.03 & -4.06 & -0.01 \\
-0.37 & 2.35 & 1.90 & 4.31 & -1.76 & 1.13 \\
-3.15 & -0.11 & 1.99 & -2.70 & 0.26 & 4.50
\end{pmatrix}
\]

The function first performs an \(LQ \) factorization of \(A \) as \(A = LP^T \) and then reduces the factor \(L \) to bidiagonal form \(B: L = QbP^T_b \). Finally it forms \(P^T_b \) and calls nag_dormbr (f08kgc) to form \(P^T_bP^T_a \).

10.1 Program Text

/* nag_dormbr (f08kgc) Example Program. */
/* Copyright 2014 Numerical Algorithms Group. */
/* Mark 7, 2001. */
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
#include <nagf16.h>
#include <nagx04.h>

int main(void)
{
 /* Scalars */
 Integer i, ic, j, m, n, pda, pdpt, pdu;
 Integer d_len, e_len, tau_len, tauq_len, taup_len;
 Integer exit_status = 0;
 NagError fail;
 Nag_OrderType order;
 /* Arrays */
double *a = 0, *d = 0, *e = 0, *pt = 0, *tau = 0, *taup = 0, *tauq = 0;
double *u = 0;

#ifdef NAG_COLUMN_MAJOR
#define A(I, J) a[(J - 1) * pda + I - 1]
#define U(I, J) u[(J - 1) * pdu + I - 1]
#define PT(I, J) pt[(J - 1) * pdpt + I - 1]
#else
#define A(I, J) a[(I - 1) * pda + J - 1]
#define U(I, J) u[(I - 1) * pdu + J - 1]
#define PT(I, J) pt[(I - 1) * pdpt + J - 1]
#endif

order = Nag_ColMajor;
#else
#define A(I, J) a[(I - 1) * pda + J - 1]
#define U(I, J) u[(I - 1) * pdu + J - 1]
#define PT(I, J) pt[(I - 1) * pdpt + J - 1]
#endif

INIT_FAIL(fail);

printf("nag_dormbr (f08kgc) Example Program Results\n");

/* Skip heading in data file */
#ifdef _WIN32
scanf_s("%*[\n] ");
#else
scanf("%*[\n] ");
#endif
for (ic = 1; ic <= 2; ++ic)
{
#ifdef _WIN32
scanf_s("%"NAG_IFMT"%"NAG_IFMT"%*[\n] ", &m, &n);
#else
scanf("%"NAG_IFMT"%"NAG_IFMT"%*[\n] ", &m, &n);
#endif
#ifdef NAG_COLUMN_MAJOR
pda = m;
#else
pda = n;
#endif
pdu = m;
pdpt = n;
tau_len = n;
tauq_len = n;
d_len = n;
e_len = n - 1;

/* Allocate memory */
if (!a || !d || !e || !pt || !tau || !taup || !tauq || !u)
{
printf("Allocation failure\n");
exit_status = -1;
goto END;
}

/* Read A from data file */
for (i = 1; i <= m; ++i)
{
#ifdef _WIN32
scanf_s("%lf", &A(i, j));
#else
scanf("%lf", &A(i, j));
#endif
}
ifdef _WIN32
scanf_s("%*[\n"]");
#else
scanf("%*[\n"]");
#endif
if (m >= n)
{
 /* Example 1. */
 /* nag_dgeqrf (f08aec): Compute the QR factorization of A */
 nag_dgeqrf(order, m, n, a, pda, tau, &fail);
 if (fail.code != NE_NOERROR)
 {
 printf("Error from nag_dgeqrf (f08aec).\n%s\n", fail.message);
 exit_status = 1;
 goto END;
 }
 /* Copy A to U */
 for (i = 1; i <= m; ++i)
 {
 for (j = 1; j <= MIN(i, n); ++j)
 U(i, j) = A(i, j);
 }
 /* nag_dorgqr (f08afc): */
 /* Form Q explicitly, storing the result in U */
 nag_dorgqr(order, m, m, n, u, pdu, tau, &fail);
 if (fail.code != NE_NOERROR)
 {
 printf("order=%d\n", order);
 printf("Error from nag_dorgqr (f08afc).\n%s\n", fail.message);
 exit_status = 1;
 goto END;
 }
 /* Copy R to PT (used as workspace) */
 nag_dtr_copy(order, Nag_Upper, Nag_NoTrans, Nag_NoUnitDiag, n, a,
 pda, pt, pdpt, &fail);
 /* Set the strictly lower triangular part of R to zero */
 for (i = 2; i <= n; ++i)
 {
 for (j = 1; j <= MIN(i - 1, n - 1); ++j)
 PT(i, j) = 0.0;
 }
 /* nag_dgebrd (f08kec): Bidiagonalize R. */
 nag_dgebrd(order, n, n, pt, pdpt, d, e, tauq, taup, &fail);
 if (fail.code != NE_NOERROR)
 {
 printf("Error from nag_dgebrd (f08kec).\n%s\n", fail.message);
 exit_status = 1;
 goto END;
 }
 /* nag_dormbr (f08kgc): Update Q, storing the result in U. */
 nag_dormbr(order, Nag_ApplyQ, Nag_RightSide, Nag_NoTrans, m, n, n, pt, pdpt, tauq, u, pdu, &fail);
 if (fail.code != NE_NOERROR)
 {
 printf("Error from nag_dormbr (f08kgc).\n%s\n", fail.message);
 exit_status = 1;
 goto END;
 }
 /* Print bidiagonal form and matrix Q */
 printf("\nExample 1: bidiagonal matrix B\nDiagonal\n");
 for (i = 1; i <= n; ++i)
 printf("%8.4f\n", d[i - 1], i % 8 == 0?"\n": "");
 printf("\nSuper-diagonal\n");
 for (i = 1; i <= n - 1; ++i)
 printf("%8.4f", e[i - 1], i % 8 == 0?"\n": "");
 printf("\n\n");
/* nag_gen_real_mat_print (x04cac): Print Q as stored in u. */
fflush(stdout);
nag_gen_real_mat_print(order, Nag_GeneralMatrix, Nag_NonUnitDiag,
m, n, u, pdu, "Example 1: matrix Q",
0, &fail);
if (fail.code != NE_NOERROR)
{
 printf("Error from nag_gen_real_mat_print (x04cac).\n\n%s\n",
fail.message);
 exit_status = 1;
 goto END;
}
else
{
 /* Example 2. */
 /* nag_dgelqf (f08ahc): Compute the LQ factorization of A. */
nag_dgelqf(order, m, n, a, pda, tau, &fail);
if (fail.code != NE_NOERROR)
{
 printf("Error from nag_dgelqf (f08ahc).\n\n%s\n",
fail.message);
 exit_status = 1;
 goto END;
}
 /* Copy A to PT */
 for (i = 1; i <= m; ++i)
 {
 for (j = i; j <= n; ++j)
 PT(i, j) = A(i, j);
 }
 /* nag_dorglq (f08ajc): */
 /* Form Q explicitly, storing the result in PT. */
nag_dorglq(order, n, n, m, pt, pdpt, tau, &fail);
if (fail.code != NE_NOERROR)
{
 printf("Error from nag_dorglq (f08ajc).\n\n%s\n",
fail.message);
 exit_status = 1;
 goto END;
}
 /* Copy L to U (used as workspace) */
nag_dtr_copy(order, Nag_Lower, Nag_NoTrans, Nag_NonUnitDiag, m, a,
pda, u, pdu, &fail);
 /* Set the strictly upper triangular part of L to zero */
 for (i = 1; i <= m - 1; ++i)
 {
 for (j = i + 1; j <= m; ++j)
 U(i, j) = 0.0;
 }
 /* nag_dgebrd (f08kec): Bidiagonalize L. */
nag_dgebrd(order, m, m, u, pdu, d, e, tauq, taup, &fail);
if (fail.code != NE_NOERROR)
{
 printf("Error from nag_dgebrd (f08kec).\n\n%s\n",
fail.message);
 exit_status = 1;
 goto END;
}
 /* nag_dormbr (f08kgc): Update P**T, storing the result in PT. */
nag_dormbr(order, Nag_ApplyP, Nag_LeftSide, Nag_Trans,
m, n, m, u, pdu, tauq, pt, pdpt, &fail);
if (fail.code != NE_NOERROR)
{
 printf("Error from nag_dormbr (f08kgc).\n\n%s\n",
fail.message);
 exit_status = 1;
 goto END;
}
/* Print bidiagonal form and matrix P**T */
printf("Example 2: bidiagonal matrix B
\Diagonal\n");
for (i = 1; i <= m; ++i)
 printf("%8.4f\n", d[i - 1], i % 8 == 0?"\n":" ");
printf("\n\nSuper-diagonal\n");
for (i = 1; i <= m - 1; ++i)
 printf("%8.4f\n", e[i - 1], i % 8 == 0?"\n":" ");

/* nag_gen_real_mat_print (x04cac), Print pt. */
fflush(stdout);
nag_gen_real_mat_print(order, Nag_GeneralMatrix, Nag_NonUnitDiag,
m, n, pt, pdpt, "Example 2: matrix P**T",
0, &fail);
if (fail.code != NE_NOERROR)
{
 printf("Error from nag_gen_real_mat_print (x04cac).\n\n", fail.message);
 exit_status = 1;
 goto END;
}

END:
NAG_FREE(a);
NAG_FREE(d);
NAG_FREE(e);
NAG_FREE(pt);
NAG_FREE(tau);
NAG_FREE(taup);
NAG_FREE(tauq);
NAG_FREE(u);
return exit_status;
}
#endif

10.2 Program Data

nag_dormbr (f08kgc) Example Program Data

Example 1: Values of M and N, Example 1
6 4
-0.57 -1.28 -0.39 0.25
-1.93 1.08 -0.31 -2.14
2.30 0.24 0.40 -0.35
-1.93 0.64 -0.66 0.08
0.15 0.30 0.15 -2.13
-0.02 1.03 -1.43 0.50

Example 2: Values of M and N, Example 2
4 6
-5.42 3.28 -3.68 0.27 2.06 0.46
-1.65 -3.40 -3.20 -1.03 -4.06 -0.01
-0.37 2.35 1.90 4.31 -1.76 1.13
-3.15 -0.11 1.99 -2.70 0.26 4.50

10.3 Program Results

nag_dormbr (f08kgc) Example Program Results

Example 1: bidiagonal matrix B
Diagonal
3.6177 -2.4161 1.9213 -1.4265
Super-diagonal
1.2587 -1.5262 1.1895

Example 1: matrix Q
1 2 3 4
1 -0.1576 -0.2690 0.2612 0.8513

Mark 25
Example 2: bidiagonal matrix B
Diagonal

\[
\begin{array}{cccc}
-7.7724 & 6.1573 & -6.0576 & 5.7933 \\
1.1926 & 0.5734 & -1.9143 \\
\end{array}
\]

Super-diagonal

Example 2: matrix P**T

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.7104</td>
<td>0.4299</td>
<td>-0.4824</td>
<td>0.0354</td>
<td>0.2700</td>
<td>0.0603</td>
</tr>
<tr>
<td>2</td>
<td>0.3583</td>
<td>0.1382</td>
<td>-0.4110</td>
<td>0.4044</td>
<td>0.0951</td>
<td>-0.7148</td>
</tr>
<tr>
<td>3</td>
<td>-0.0507</td>
<td>0.4244</td>
<td>0.3795</td>
<td>0.7402</td>
<td>-0.2773</td>
<td>0.2203</td>
</tr>
<tr>
<td>4</td>
<td>0.2442</td>
<td>0.4016</td>
<td>0.4158</td>
<td>-0.1354</td>
<td>0.7666</td>
<td>-0.0137</td>
</tr>
</tbody>
</table>