NAG Library Function Document

nag_dsteqr (f08jec)

1 Purpose

nag_dsteqr (f08jec) computes all the eigenvalues and, optionally, all the eigenvectors of a real symmetric tridiagonal matrix, or of a real symmetric matrix which has been reduced to tridiagonal form.

2 Specification

#include <nag.h>
#include <nagf08.h>

void nag_dsteqr (Nag_OrderType order, Nag_ComputeZType compz, Integer n, double d[], double e[], double z[], Integer pdz, NagError *fail)

3 Description

nag_dsteqr (f08jec) computes all the eigenvalues and, optionally, all the eigenvectors of a real symmetric tridiagonal matrix T. In other words, it can compute the spectral factorization of T as

$$ T = Z \Lambda Z^T, $$

where Λ is a diagonal matrix whose diagonal elements are the eigenvalues λ_i, and Z is the orthogonal matrix whose columns are the eigenvectors z_i. Thus

$$ T z_i = \lambda_i z_i, \quad i = 1, 2, \ldots, n. $$

The function may also be used to compute all the eigenvalues and eigenvectors of a real symmetric matrix A which has been reduced to tridiagonal form T:

$$ A = QTQ^T, $$

where Q is orthogonal

$$ = (QZ)\Lambda(QZ)^T. $$

In this case, the matrix Q must be formed explicitly and passed to nag_dsteqr (f08jec), which must be called with compz = Nag_UpdateZ. The functions which must be called to perform the reduction to tridiagonal form and form Q are:

- full matrix: nag_dsytrd (f08fec) and nag_dorgtr (f08ffc)
- full matrix, packed storage: nag_dspptrd (f08gec) and nag_dporgtr (f08gfc)
- band matrix: nag_dsbtrd (f08hec) with vect = Nag_FormQ.

nag_dsteqr (f08jec) uses the implicitly shifted QR algorithm, switching between the QR and QL variants in order to handle graded matrices effectively (see Greenbaum and Dongarra (1980)). The eigenvectors are normalized so that $\|z_i\|_2 = 1$, but are determined only to within a factor ± 1.

If only the eigenvalues of T are required, it is more efficient to call nag_dsterf (f08jfc) instead. If T is positive definite, small eigenvalues can be computed more accurately by nag_dpteqr (f08jgc).
4 References

5 Arguments

1: \texttt{order} \hspace{1cm} \textit{Input}

\textit{On entry:} the \texttt{order} argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by \texttt{order} = \texttt{Nag_RowMajor}. See Section 3.2.1.3 in the Essential Introduction for a more detailed explanation of the use of this argument.

\textit{Constraint:} \texttt{order} = \texttt{Nag_RowMajor} or \texttt{Nag_ColMajor}.

2: \texttt{compz} \hspace{1cm} \textit{Input}

\textit{On entry:} indicates whether the eigenvectors are to be computed.

\texttt{compz} = \texttt{Nag_NotZ}

Only the eigenvalues are computed (and the array \texttt{z} is not referenced).

\texttt{compz} = \texttt{Nag_UpdateZ}

The eigenvalues and eigenvectors of \(A \) are computed (and the array \texttt{z} must contain the matrix \(Q \) on entry).

\texttt{compz} = \texttt{Nag_InitZ}

The eigenvalues and eigenvectors of \(T \) are computed (and the array \texttt{z} is initialized by the function).

\textit{Constraint:} \texttt{compz} = \texttt{Nag_NotZ}, \texttt{Nag_UpdateZ} or \texttt{Nag_InitZ}.

3: \texttt{n} \hspace{1cm} \textit{Input}

\textit{On entry:} \(n \), the order of the matrix \(T \).

\textit{Constraint:} \(n \geq 0 \).

4: \texttt{d[dim]} \hspace{1cm} \textit{Input/Output}

\textit{Note:} the dimension, \(dim \), of the array \texttt{d} must be at least \(\max(1,n) \).

\textit{On entry:} the diagonal elements of the tridiagonal matrix \(T \).

\textit{On exit:} the \(n \) eigenvalues in ascending order, unless \texttt{fail.code} = \texttt{NE_CONVERGENCE} (in which case see Section 6).

5: \texttt{e[dim]} \hspace{1cm} \textit{Input/Output}

\textit{Note:} the dimension, \(dim \), of the array \texttt{e} must be at least \(\max(1,n-1) \).

\textit{On entry:} the off-diagonal elements of the tridiagonal matrix \(T \).

\textit{On exit:} \texttt{e} is overwritten.

6: \texttt{z[dim]} \hspace{1cm} \textit{Input/Output}

\textit{Note:} the dimension, \(dim \), of the array \texttt{z} must be at least \(\texttt{pdz} \times n \) when \texttt{compz} = \texttt{Nag_UpdateZ} or \texttt{Nag_InitZ}.
The \((i, j)\)th element of the matrix \(Z\) is stored in
\[
Z[(j - 1) \times \text{pdz} + i - 1] \quad \text{when order = Nag_ColMajor;}
Z[(i - 1) \times \text{pdz} + j - 1] \quad \text{when order = Nag_RowMajor.}
\]

On entry: if \text{compz} = \text{Nag_UpdateZ}, \(z\) must contain the orthogonal matrix \(Q\) from the reduction to tridiagonal form.

If \text{compz} = \text{Nag_InitZ}, \(z\) must be allocated, but its contents need not be set.

If \text{compz} = \text{Nag_NotZ}, \(z\) is not referenced and may be \text{NULL}.

On exit: if \text{compz} = \text{Nag_UpdateZ} or \text{Nag_InitZ}, the \(n\) required orthonormal eigenvectors stored as columns of \(Z\); the \(i\)th column corresponds to the \(i\)th eigenvalue, where \(i = 1, 2, \ldots, n\), unless \text{fail.errnum} > 0.

\(z\) is not changed if \text{compz} = \text{Nag_NotZ}.

7: \quad \text{pdz} \quad \text{– Integer} \\
\text{Input}

\text{On entry:} \text{the stride separating row or column elements (depending on the value of order) in the array z.}

\text{Constraints:}
\begin{align*}
\text{if compz = Nag_UpdateZ or Nag_InitZ, pdz} & \geq n; \\
\text{if compz = Nag_NotZ, z may be NULL.}
\end{align*}

8: \quad \text{fail} \quad \text{– NagError} \ast \\
\text{Input/Output}

\text{The NAG error argument (see Section 3.6 in the Essential Introduction).}

6 \quad \text{Error Indicators and Warnings}

\text{NE_ALLOC_FAIL}

\text{Dynamic memory allocation failed.}
\text{See Section 3.2.1.2 in the Essential Introduction for further information.}

\text{NE_BAD_PARAM}

\text{On entry, argument \langle value\rangle had an illegal value.}

\text{NE_CONVERGENCE}

\text{The algorithm has failed to find all the eigenvalues after a total of } 30 \times n \text{ iterations. In this case, } d \text{ and } e \text{ contain on exit the diagonal and off-diagonal elements, respectively, of a tridiagonal matrix orthogonally similar to } T. \langle value\rangle \text{ off-diagonal elements have not converged to zero.}

\text{NE_ENUM_INT_2}

\text{On entry, compz = \langle value\rangle, pdz = \langle value\rangle and n = \langle value\rangle.}
\text{Constraint: if compz = Nag_UpdateZ or Nag_InitZ, pdz} \geq n.

\text{NE_INT}

\text{On entry, n = \langle value\rangle.}
\text{Constraint: n} \geq 0.

\text{On entry, pdz = \langle value\rangle.}
\text{Constraint: pdz} > 0.

\text{NE_INTERNAL_ERROR}

\text{An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.}
An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

7 Accuracy
The computed eigenvalues and eigenvectors are exact for a nearby matrix $(T + E)$, where
\[\|E\|_2 = O(\epsilon)\|T\|_2,\]
and ϵ is the machine precision.
If λ_i is an exact eigenvalue and $\tilde{\lambda}_i$ is the corresponding computed value, then
\[|\tilde{\lambda}_i - \lambda_i| \leq c(n)\epsilon\|T\|_2,\]
where $c(n)$ is a modestly increasing function of n.
If z_i is the corresponding exact eigenvector, and \tilde{z}_i is the corresponding computed eigenvector, then the angle $\theta(\tilde{z}_i, z_i)$ between them is bounded as follows:
\[\theta(\tilde{z}_i, z_i) \leq \frac{c(n)\epsilon\|T\|_2}{\min_{i \neq j}|\lambda_i - \lambda_j|}.\]
Thus the accuracy of a computed eigenvector depends on the gap between its eigenvalue and all the other eigenvalues.

8 Parallelism and Performance
nag_dsteqr (f08jec) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
nag_dsteqr (f08jec) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users’ Note for your implementation for any additional implementation-specific information.

9 Further Comments
The total number of floating-point operations is typically about $24n^2$ if $\text{compz} = \text{Nag_NotZ}$ and about $7n^3$ if $\text{compz} = \text{Nag_UpdateZ}$ or Nag_InitZ, but depends on how rapidly the algorithm converges. When $\text{compz} = \text{Nag_NotZ}$, the operations are all performed in scalar mode; the additional operations to compute the eigenvectors when $\text{compz} = \text{Nag_UpdateZ}$ or Nag_InitZ can be vectorized and on some machines may be performed much faster.
The complex analogue of this function is nag_zsteqr (f08jsc).

f08jec

NAG Library Manual

\text{f08jec.4
Mark 25}
10 Example

This example computes all the eigenvalues and eigenvectors of the symmetric tridiagonal matrix T, where

$$
T = \begin{pmatrix}
-6.99 & -0.44 & 0.00 & 0.00 \\
-0.44 & 7.92 & -2.63 & 0.00 \\
0.00 & -2.63 & 2.34 & -1.18 \\
0.00 & 0.00 & -1.18 & 0.32
\end{pmatrix}
$$

See also the examples for nag_dorgtr (f08ffc), nag_dopgtr (f08gfc) or nag_dsbtrd (f08hec), which illustrate the use of this function to compute the eigenvalues and eigenvectors of a full or band symmetric matrix.

10.1 Program Text

```c
/* nag_dsteqr (f08jec) Example Program. */
/* Copyright 2014 Numerical Algorithms Group. */
/* Mark 7, 2001. */

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
#include <nagf16.h>
#include <nagx04.h>

int main(void)
{
    /* Scalars */
    Integer i, j, k, n, pdz, d_len, e_len, rowinc;
    Integer exit_status = 0;
    double r;
    /* Arrays */
    double *z = 0, *d = 0, *e = 0;
    /* Nag Types */
    NagError fail;
    Nag_OrderType order;

    #ifdef NAG_COLUMN_MAJOR
    rowinc = 1;
    #else
    rowinc = n;
    #endif

    INIT_FAIL(fail);
    printf("nag_dsteqr (f08jec) Example Program Results\n\n");

    /* Skip heading in data file */
    #ifdef _WIN32
    scanf_s("%*\n");
    #else
    scanf("%*\n");
    #endif
    #ifdef _WIN32
    scanf_s("%"NAG_IFMT"%*\n", &n);
    #else
    scanf("%"NAG_IFMT"%*\n", &n);
    #endif
    #ifdef NAG_COLUMN_MAJOR
    order = Nag_ColMajor;
    #else
    order = Nag_RowMajor;
    #endif

    INIT_FAIL(fail);
    printf("nag_dsteqr (f08jec) Example Program Results\n\n");
```

Mark 25
#endif

pdz = n;
d_len = n;
e_len = n - 1;

/* Allocate memory */
if (!(z = NAG_ALLOC(n * n, double)) ||
 !(d = NAG_ALLOC(d_len, double)) ||
 !(e = NAG_ALLOC(e_len, double)))
{
 printf("Allocation failure\n");
 exit_status = -1;
 goto END;
}

/* Read T from data file */
for (i = 0; i < d_len; ++i)
 #ifdef _WIN32
 scanf_s("%lf", &d[i]);
 #else
 scanf("%lf", &d[i]);
 #endif

for (i = 0; i < e_len; ++i)
 #ifdef _WIN32
 scanf_s("%lf", &e[i]);
 #else
 scanf("%lf", &e[i]);
 #endif

/* Calculate all the eigenvalues and eigenvectors of tridiagonal matrix T,
 * reduced from real symmetric matrix using nag_dsteqr (f08jec). */
nag_dsteqr(order, Nag_InitZ, n, d, e, z, pdz, &fail);
if (fail.code != NE_NOERROR) {
 printf("Error from nag_dsteqr (f08jec).\n%s\n", fail.message);
 exit_status = 1;
 goto END;
}

/* Normalize the eigenvectors */
for(j=1; j<=n; j++) {
 nag_damax_val(n, &Z(1,j), rowinc, &k, &r, &fail);
 for (i=1; i<=n; i++)
 Z(i,j) = Z(i,j)/r;
}

/* Print eigenvalues and eigenvectors */
printf("Eigenvalues\n");
for (i = 0; i < n; ++i)
 printf(" %7.4lf", d[i]);
printf("\n\n");

/* Print real general matrix Z using easy-to-use
 * nag_gen_real_mat_print (x04cac). */
fflush(stdout);
nag_gen_real_mat_print(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n, z, pdz, "Eigenvectors", 0, &fail);
if (fail.code != NE_NOERROR) {
 printf("Error from nag_gen_real_mat_print (x04cac).\n%s\n", fail.message);
 exit_status = 1;
}
END:
NAG_FREE(d);
NAG_FREE(e);
NAG_FREE(z);
return exit_status;
}
10.2 Program Data

nag_dsteqr (f08jec) Example Program Data

4 :Value of N
-6.99 7.92 2.34 0.32 :End of matrix T
-0.44 -2.63 -1.18

10.3 Program Results

nag_dsteqr (f08jec) Example Program Results

Eigenvalues
-7.0037 -0.4059 2.0028 8.9968

Eigenvectors

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0000</td>
<td>-0.0129</td>
<td>-0.0217</td>
<td>-0.0275</td>
</tr>
<tr>
<td>2</td>
<td>0.0311</td>
<td>0.1936</td>
<td>0.4429</td>
<td>1.0000</td>
</tr>
<tr>
<td>3</td>
<td>0.0089</td>
<td>0.6152</td>
<td>1.0000</td>
<td>-0.4048</td>
</tr>
<tr>
<td>4</td>
<td>0.0014</td>
<td>1.0000</td>
<td>-0.7012</td>
<td>0.0551</td>
</tr>
</tbody>
</table>