NAG Library Function Document

nag_zheev (f08fnc)

1 Purpose

nag_zheev (f08fnc) computes all the eigenvalues and, optionally, all the eigenvectors of a complex n by n Hermitian matrix A.

2 Specification

```c
#include <nag.h>
#include <nagf08.h>

void nag_zheev (Nag_OrderType order, Nag_JobType job, Nag_UploType uplo,
                Integer n, Complex a[], Integer pda, double w[], NagError *fail)
```

3 Description

The Hermitian matrix A is first reduced to real tridiagonal form, using unitary similarity transformations, and then the QR algorithm is applied to the tridiagonal matrix to compute the eigenvalues and (optionally) the eigenvectors.

4 References

5 Arguments

1: order – Nag_OrderType

 Input

 On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by

 order = Nag_RowMajor. See Section 3.2.1.3 in the Essential Introduction for a more detailed explanation of the use of this argument.

 Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: job – Nag_JobType

 Input

 On entry: indicates whether eigenvectors are computed.

 job = Nag_EigVals

 Only eigenvalues are computed.

 job = Nag_DoBoth

 Eigenvalues and eigenvectors are computed.

 Constraint: job = Nag_EigVals or Nag_DoBoth.

3: uplo – Nag_UploType

 Input

 On entry: if uplo = Nag_Upper, the upper triangular part of A is stored.
If \(\text{uplo} = \text{Nag_Lower} \), the lower triangular part of \(A \) is stored.

Constraint: \(\text{uplo} = \text{Nag_Upper} \) or \(\text{Nag_Lower} \).

4: \(\text{n} \) – Integer

\(\text{Input} \)

On entry: \(n \), the order of the matrix \(A \).

Constraint: \(n \geq 0 \).

5: \(\text{a}[\text{dim}] \) – Complex

Input/Output

Note: the dimension, \(\text{dim} \), of the array \(\text{a} \) must be at least \(\max(1, \text{pda} \times n) \).

On entry: the \(n \) by \(n \) Hermitian matrix \(A \).

If \(\text{order} = \text{Nag_ColMajor} \), \(A_{ij} \) is stored in \(\text{a}[(j - 1) \times \text{pda} + i - 1] \).

If \(\text{order} = \text{Nag_RowMajor} \), \(A_{ij} \) is stored in \(\text{a}[(i - 1) \times \text{pda} + j - 1] \).

If \(\text{uplo} = \text{Nag_Upper} \), the upper triangular part of \(A \) must be stored and the elements of the array below the diagonal are not referenced.

If \(\text{uplo} = \text{Nag_Lower} \), the lower triangular part of \(A \) must be stored and the elements of the array above the diagonal are not referenced.

On exit: if \(\text{job} = \text{Nag_DoBoth} \), then \(\text{a} \) contains the orthonormal eigenvectors of the matrix \(A \).

If \(\text{job} = \text{Nag_EigVals} \), then on exit the lower triangle (if \(\text{uplo} = \text{Nag_Lower} \)) or the upper triangle (if \(\text{uplo} = \text{Nag_Upper} \)) of \(\text{a} \), including the diagonal, is overwritten.

6: \(\text{pda} \) – Integer

\(\text{Input} \)

On entry: the stride separating row or column elements (depending on the value of \(\text{order} \)) in the array \(\text{a} \).

Constraint: \(\text{pda} \geq \max(1, n) \).

7: \(\text{w}[n] \) – double

\(\text{Output} \)

On exit: the eigenvalues in ascending order.

8: \(\text{fail} \) – NagError *

\(\text{Input/Output} \)

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 \text{ Error Indicators and Warnings}

NE_ALLOC_FAIL

Dynamic memory allocation failed.

See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM

On entry, argument \(\langle \text{value} \rangle \) had an illegal value.

NE_CONVERGENCE

The algorithm failed to converge; \(\langle \text{value} \rangle \) off-diagonal elements of an intermediate tridiagonal form did not converge to zero.

NE_INT

On entry, \(n = \langle \text{value} \rangle \).

Constraint: \(n \geq 0 \).
On entry, \(\text{pda} = \langle \text{value} \rangle \).
Constraint: \(\text{pda} > 0 \).

NE_INT_2

On entry, \(\text{pda} = \langle \text{value} \rangle \) and \(n = \langle \text{value} \rangle \).
Constraint: \(\text{pda} \geq \max(1, n) \).

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

7 **Accuracy**

The computed eigenvalues and eigenvectors are exact for a nearby matrix \((A + E) \), where
\[
\|E\|_2 = O(\varepsilon)\|A\|_2,
\]
and \(\varepsilon \) is the *machine precision*. See Section 4.7 of Anderson *et al.* (1999) for further details.

8 **Parallelism and Performance**

\f08\text{fnc} \) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.

\f08\text{fnc} \) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users’ Note for your implementation for any additional implementation-specific information.

9 **Further Comments**

Each eigenvector is normalized so that the element of largest absolute value is real and positive.

The total number of floating-point operations is proportional to \(n^3 \).

The real analogue of this function is \f08\text{fac} .

10 **Example**

This example finds all the eigenvalues and eigenvectors of the Hermitian matrix
\[
A = \begin{pmatrix}
1 & 2 - i & 3 - i & 4 - i \\
2 + i & 2 & 3 - 2i & 4 - 2i \\
3 + i & 3 + 2i & 3 & 4 - 3i \\
4 + i & 4 + 2i & 4 + 3i & 4
\end{pmatrix},
\]

together with approximate error bounds for the computed eigenvalues and eigenvectors.
10.1 Program Text

/* nag_zheev (f08fnc) Example Program. *
* Copyright 2014 Numerical Algorithms Group.
* Mark 23, 2011. */

#include <math.h>
#include <stdio.h>
#include <nag.h>
#include <naq_stdlib.h>
#include <naga02.h>
#include <nagf08.h>
#include <nagx02.h>
#include <nagx04.h>

int main(void)
{
 /* Scalars */
 double eerrbd, eps;
 Integer exit_status = 0, i, j, n, pda;
 /* Arrays */
 Complex *a = 0;
 double *rcondz = 0, *w = 0, *zerrbd = 0;
 /* Nag Types */
 Nag_OrderType order;
 NagError fail;

 #ifdef NAG_COLUMN_MAJOR
 #define A(I, J) a[(J - 1) * pda + I - 1]
 order = Nag_ColMajor;
 #else
 #define A(I, J) a[(I - 1) * pda + J - 1]
 order = Nag_RowMajor;
 #endif
 INIT_FAIL(fail);
 printf("nag_zheev (f08fnc) Example Program Results\n\n");

 /* Skip heading in data file */
 #ifdef _WIN32
 scanf_s("%*[\n]");
 #else
 scanf("%*[\n]");
 #endif
 #ifdef _WIN32
 scanf_s("%"NAG_IFMT”%*[\n]", &n);
 #else
 scanf("%”NAG_IFMT”%*[\n]", &n);
 #endif

 /* Allocate memory */
 if (!(a = NAG_ALLOC(n*n, Complex)) ||
 !(rcondz = NAG_ALLOC(n, double)) ||
 !(w = NAG_ALLOC(n, double)) ||
 !(zerrbd = NAG_ALLOC(n, double)))
 {
 printf("Allocation failure\n");
 exit_status = -1;
 goto END;
 }

 #ifdef NAG_COLUMN_MAJOR
 pda = n;
 #else
 pda = n;
 #endif
/* Read the upper triangular part of the matrix A from data file */
for (i = 1; i <= n; ++i)
 for (j = i; j <= n; ++j)
 #ifdef _WIN32
 scanf_s(" (%lf , %lf)", &A(i, j).re, &A(i, j).im);
 #else
 scanf(" (%lf , %lf)", &A(i, j).re, &A(i, j).im);
 #endif
 #ifdef _WIN32
 scanf_s("%*[\n]");
 #else
 scanf("%*[\n]");
 #endif

/* nag_zheev (f08fnc).
 * Solve the Hermitian eigenvalue problem.
 */
 nag_zheev(order, Nag_DoBoth, Nag_Upper, n, a, pda, w, &fail);
 if (fail.code != NE_NOERROR)
 {
 printf("Error from nag_zheev (f08fnc).\n%s\n", fail.message);
 exit_status = 1;
 goto END;
 }

/* nag_complex_divide (a02cdc).
 * Normalize the eigenvectors.
 */
 for(j=1; j<=n; j++)
 for(i=n; i>=1; i--)
 A(i, j) = nag_complex_divide(A(i, j),A(1, j));

/* Print solution */
 printf("Eigenvalues\n");
 for (j = 0; j < n; ++j)
 printf("%8.4f%s", w[j], (j+1)%8 == 0?"\n":" ");
 printf("\n\n");

/* nag_gen_complx_mat_print (x04dac).
 * Print eigenvectors.
 */
 fflush(stdout);
 nag_gen_complx_mat_print(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n,
 n, a, pda, "Eigenvectors", 0, &fail);
 if (fail.code != NE_NOERROR)
 {
 printf("Error from nag_gen_complx_mat_print (x04dac).\n%s\n", fail.message);
 exit_status = 1;
 goto END;
 }

/* Get the machine precision, eps, using nag_machine_precision (X02AJC)
 * and compute the approximate error bound for the computed eigenvalues.
 * Note that for the 2-norm, ||A|| = max (|w[i]|, i=0..n-1), and since
 * the eigenvalues are in ascending order ||A|| = max(|w[0]|, |w[n-1]|).
 */
 eps = nag_machine_precision;
 eerrbd = eps * MAX(fabs(w[0]), fabs(w[n-1]));

/* nag_ddisna (f08flc).
 * Estimate reciprocal condition numbers for the eigenvectors.
 */
 nag_ddisna(Nag_EigVecs, n, n, w, rcondz, &fail);
 if (fail.code != NE_NOERROR)
 {
 printf("Error from nag_ddisna (f08flc).\n%s\n", fail.message);
 exit_status = 1;
 goto END;
 }
/* Compute the error estimates for the eigenvectors */
for (i = 0; i < n; ++i)
 zerrbd[i] = eerrbd / rcondz[i];

/* Print the approximate error bounds for the eigenvalues and vectors */
printf("Error estimate for the eigenvalues\n");
printf("%11.1e\n", eerrbd);
printf("Error estimates for the eigenvectors\n");
for (i = 0; i < n; ++i)
 printf("%11.1e%s", zerrbd[i], (i+1)%6 == 0?"\n":" ");

END:
NAG_FREE(a);
NAG_FREE(rcondz);
NAG_FREE(w);
NAG_FREE(zerrbd);
return exit_status;
}

#undef A

10.2 Program Data

nag_zheev (f08fnc) Example Program Data

4 :Value of n

(1.0, 0.0) (2.0, -1.0) (3.0, -1.0) (4.0, -1.0)
(2.0, 0.0) (3.0, -2.0) (4.0, -2.0)
(3.0, 0.0) (4.0, -3.0)
(4.0, 0.0) :End of matrix A

10.3 Program Results

nag_zheev (f08fnc) Example Program Results

Eigenvalues
-4.2443 -0.6886 1.1412 13.7916

Eigenvectors

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td></td>
<td>-0.0000</td>
<td>0.0000</td>
<td>-0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>2</td>
<td>0.6022</td>
<td>-0.7703</td>
<td>0.0516</td>
<td>1.1508</td>
</tr>
<tr>
<td></td>
<td>-0.7483</td>
<td>-0.1746</td>
<td>1.2795</td>
<td>-0.0404</td>
</tr>
<tr>
<td>3</td>
<td>-0.6540</td>
<td>0.4559</td>
<td>-1.1962</td>
<td>1.3404</td>
</tr>
<tr>
<td></td>
<td>-0.7642</td>
<td>0.4892</td>
<td>-0.2954</td>
<td>0.2188</td>
</tr>
<tr>
<td>4</td>
<td>-0.9197</td>
<td>-0.3464</td>
<td>0.7876</td>
<td>1.3674</td>
</tr>
<tr>
<td></td>
<td>0.7044</td>
<td>-0.4448</td>
<td>-0.5075</td>
<td>0.8207</td>
</tr>
</tbody>
</table>

Error estimate for the eigenvalues
1.5e-15

Error estimates for the eigenvectors
4.3e-16 8.4e-16 8.4e-16 1.2e-16