NAG Library Function Document

nag_ztzrzf (f08bvc)

1 Purpose

nag_ztzrzf (f08bvc) reduces the \(m \times n \) complex upper trapezoidal matrix \(A \) to upper triangular form by means of unitary transformations.

2 Specification

```c
#include <nag.h>
#include <nagf08.h>

void nag_ztzrzf (Nag_OrderType order, Integer m, Integer n, Complex a[],
                  Integer pda, Complex tau[], NagError *fail)
```

3 Description

The \(m \times n \) complex upper trapezoidal matrix \(A \) given by

\[
A = \begin{pmatrix}
R_1 & R_2 \\
\end{pmatrix},
\]

where \(R_1 \) is an \(m \times m \) upper triangular matrix and \(R_2 \) is an \(m \times (n-m) \) matrix, is factorized as

\[
A = \begin{pmatrix}
R & 0 \\
\end{pmatrix} Z,
\]

where \(R \) is also an \(m \times m \) upper triangular matrix and \(Z \) is an \(n \times n \) unitary matrix.

4 References

5 Arguments

1: \(\text{order} \) – Nag_OrderType

On entry: the \(\text{order} \) argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by \(\text{order} = \text{Nag_RowMajor} \). See Section 3.2.1.3 in the Essential Introduction for a more detailed explanation of the use of this argument.

Constraint: \(\text{order} = \text{Nag_RowMajor} \) or \(\text{Nag_ColMajor} \).

2: \(m \) – Integer

On entry: \(m \), the number of rows of the matrix \(A \).

Constraint: \(m \geq 0 \).

3: \(n \) – Integer

On entry: \(n \), the number of columns of the matrix \(A \).

Constraint: \(n \geq 0 \).
4: \begin{itemize}
 \item \texttt{a[dim]} – Complex \hspace{1cm} \textit{Input/Output}
 \begin{itemize}
 \item \textbf{Note:} the dimension, \textit{dim}, of the array \texttt{a} must be at least
 \[\max(1, \texttt{pda} \times \texttt{n}) \] when \texttt{order} = \texttt{Nag_ColMajor};
 \[\max(1, \texttt{m} \times \texttt{pda}) \] when \texttt{order} = \texttt{Nag_RowMajor}.
 \end{itemize}
 The \((i,j)\)th element of the matrix \(A\) is stored in
 \begin{align*}
 \texttt{a}[(j - 1) \times \texttt{pda} + i - 1] & \quad \text{when} \quad \texttt{order} = \texttt{Nag_ColMajor}; \\
 \texttt{a}[(i - 1) \times \texttt{pda} + j - 1] & \quad \text{when} \quad \texttt{order} = \texttt{Nag_RowMajor}.
 \end{align*}
 \textit{On entry:} the leading \(m\) by \(n\) upper trapezoidal part of the array \texttt{a} must contain the matrix to be factorized.
 \textit{On exit:} the leading \(m\) by \(m\) upper triangular part of \texttt{a} contains the upper triangular matrix \(R\), and elements \(m + 1\) to \(n\) of the first \(m\) rows of \texttt{a}, with the array \texttt{tau}, represent the unitary matrix \(Z\) as a product of \(m\) elementary reflectors (see Section 3.3.6 in the f08 Chapter Introduction).
\end{itemize}

5: \begin{itemize}
 \item \texttt{pda} – Integer \hspace{1cm} \textit{Input}
 \begin{itemize}
 \item \textit{On entry:} the stride separating row or column elements (depending on the value of \texttt{order}) in the array \texttt{a}.
 \item \textbf{Constraints:}
 \[\begin{align*}
 & \text{if} \quad \texttt{order} = \texttt{Nag_ColMajor}, \quad \texttt{pda} \geq \max(1, \texttt{m}); \\
 & \text{if} \quad \texttt{order} = \texttt{Nag_RowMajor}, \quad \texttt{pda} \geq \max(1, \texttt{n}).
 \end{align*} \]
 \end{itemize}
\end{itemize}

6: \begin{itemize}
 \item \texttt{tau[dim]} – Complex \hspace{1cm} \textit{Output}
 \begin{itemize}
 \item \textbf{Note:} the dimension, \textit{dim}, of the array \texttt{tau} must be at least \(\max(1, \texttt{m})\).
 \item \textit{On exit:} the scalar factors of the elementary reflectors.
 \end{itemize}
\end{itemize}

7: \begin{itemize}
 \item \texttt{fail} – \texttt{NagError *} \hspace{1cm} \textit{Input/Output}
 \begin{itemize}
 \item The NAG error argument (see Section 3.6 in the Essential Introduction).
 \end{itemize}
\end{itemize}

6 \textbf{Error Indicators and Warnings}

\textbf{NE_ALLOC_FAIL}

Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

\textbf{NE_BAD_PARAM}

On entry, argument \langle\textit{value}\rangle had an illegal value.

\textbf{NE_INT}

On entry, \(\texttt{m} = \langle\textit{value}\rangle\).
Constraint: \(\texttt{m} \geq 0\).

On entry, \(\texttt{n} = \langle\textit{value}\rangle\).
Constraint: \(\texttt{n} \geq 0\).

On entry, \(\texttt{pda} = \langle\textit{value}\rangle\).
Constraint: \(\texttt{pda} > 0\).

\textbf{NE_INT_2}

On entry, \(\texttt{pda} = \langle\textit{value}\rangle\) and \(\texttt{m} = \langle\textit{value}\rangle\).
Constraint: \(\texttt{pda} \geq \max(1, \texttt{m})\).
On entry, \(pda = \langle \text{value} \rangle \) and \(n = \langle \text{value} \rangle \).
Constraint: \(pda \geq \max(1, n) \).

NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

7 Accuracy
The computed factorization is the exact factorization of a nearby matrix \(A + E \), where
\[
\|E\|_2 = O(\epsilon)\|A\|_2
\]
and \(\epsilon \) is the *machine precision*.

8 Parallelism and Performance
\(\text{nag_ztrzrf} \) is not threaded by NAG in any implementation.
\(\text{nag_ztrzrf} \) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users’ Note for your implementation for any additional implementation-specific information.

9 Further Comments
The total number of floating-point operations is approximately \(16m^2(n - m) \).
The real analogue of this function is \(\text{nag_dtzrzf} \).

10 Example
This example solves the linear least squares problems
\[
\min_z \|b_j - Ax_j\|_2, \quad j = 1, 2
\]
for the minimum norm solutions \(x_1 \) and \(x_2 \), where \(b_j \) is the \(j \)th column of the matrix \(B \),
\[
A = \begin{pmatrix}
0.47 - 0.34i & -0.40 + 0.54i & 0.60 + 0.01i & 0.80 - 1.02i \\
-0.32 - 0.23i & -0.05 + 0.20i & -0.26 - 0.44i & -0.43 + 0.17i \\
0.35 - 0.60i & -0.52 - 0.34i & 0.87 - 0.11i & -0.34 - 0.09i \\
0.89 + 0.71i & -0.45 - 0.45i & -0.02 - 0.57i & 1.14 - 0.78i \\
-0.19 + 0.06i & 0.11 - 0.85i & 1.44 + 0.80i & 0.07 + 1.14i
\end{pmatrix}
\]
and
\[
B = \begin{pmatrix}
-1.08 - 2.59i & 2.22 + 2.35i \\
-2.61 - 1.49i & 1.62 - 1.48i \\
3.13 - 3.61i & 1.65 + 3.43i \\
7.33 - 8.01i & -0.98 + 3.08i \\
9.12 + 7.63i & -2.84 + 2.78i
\end{pmatrix}
\]
The solution is obtained by first obtaining a QR factorization with column pivoting of the matrix A, and then the RZ factorization of the leading k by k part of R is computed, where k is the estimated rank of A. A tolerance of 0.01 is used to estimate the rank of A from the upper triangular factor, R.

10.1 Program Text

/* nag_ztzrzf (f08bvc) Example Program. */
/* Copyright 2014 Numerical Algorithms Group. */
/* Mark 23, 2011. */

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <naga02.h>
#include <nagf08.h>
#include <nagf16.h>
#include <nagx04.h>

int main(void)
{
 /* Scalars */
 Complex one = { 1.0, 0.0 };
 Complex zero = { 0.0, 0.0 };
 double tol;
 Integer i, j, k, m, n, nrhs, pda, pdb, pdw;
 Integer exit_status = 0;
 /* Arrays */
 Complex *a = 0, *b = 0, *tau = 0, *work = 0;
 double *rnorm = 0;
 Integer *jpvt = 0;
 /* Nag Types */
 Nag_OrderType order;
 NagError fail;

 #ifdef NAG_COLUMN_MAJOR
 #define A(I, J) a[(J - 1) * pda + I - 1]
 #define B(I, J) b[(J - 1) * pdb + I - 1]
 order = Nag_ColMajor;
 #else
 #define A(I, J) a[(I - 1) * pda + J - 1]
 #define B(I, J) b[(I - 1) * pdb + J - 1]
 order = Nag_RowMajor;
 #endif

 INIT_FAIL(fail);

 printf("nag_ztzrzf (f08bvc) Example Program Results\n\n");

 /* Skip heading in data file */
 #ifdef _WIN32
 scanf_s("%*[\n]");
 #else
 scanf("%*[\n]");
 #endif
 #ifdef _WIN32
 scanf("%"NAG_IFMT"%"NAG_IFMT"%"NAG_IFMT"%*[\n]", &m, &n, &nrhs);
 #else
 scanf("%"NAG_IFMT"%"NAG_IFMT"%"NAG_IFMT"%*[\n]", &m, &n, &nrhs);
 #endif

 #ifdef NAG_COLUMN_MAJOR
 pda = m;
 pdb = m;
 pdw = m;
 #else
 pda = n;
 #endif

 "f08bvc.4"
pdb = nrhs;
pdw = 1;
#endif

;/* Allocate memory */
if(!(a = NAG_ALLOC(m * n, Complex)) ||
!(b = NAG_ALLOC(m * nrhs, Complex)) ||
!(tau = NAG_ALLOC(n, Complex)) ||
!(work = NAG_ALLOC(n, Complex)) ||
!(rnorm = NAG_ALLOC(nrhs, double)) ||
!(jpvt = NAG_ALLOC(n, Integer)))
{
 printf("Allocation failure\n");
 exit_status = -1;
 goto END;
}

/* Read A and B from data file */
for (i = 1; i <= m; ++i)
 for (j = 1; j <= n; ++j)
 #ifdef _WIN32
 scanf_s(" (%lf , %lf)", &A(i, j).re, &A(i, j).im);
 #else
 scanf(" (%lf , %lf)", &A(i, j).re, &A(i, j).im);
 #endif

 for (i = 1; i <= m; ++i)
 for (j = 1; j <= nrhs; ++j)
 #ifdef _WIN32
 scanf_s(" (%lf , %lf)", &B(i, j).re, &B(i, j).im);
 #else
 scanf(" (%lf , %lf)", &B(i, j).re, &B(i, j).im);
 #endif

 /* nag_iload (f16dbc).
 * Initialize jpvt to be zero so that all columns are free.
 */
 nag_iload(n, 0, jpvt, 1, &fail);
 if (fail.code != NE_NOERROR)
 {
 printf("Error from nag_iload (f16dbc).\n", fail.message);
 exit_status = 1;
 goto END;
 }

 /* nag_zgeqp3 (f08btc).
 * Compute the QR factorization of A with column pivoting as
 * A = Q*(R11 R12)*(P**T)
 * (0 R22)
 */
 nag_zgeqp3(order, m, n, a, pda, jpvt, tau, &fail);
 if (fail.code != NE_NOERROR)
 {
 printf("Error from nag_zgeqp3 (f08btc).\n", fail.message);
 exit_status = 1;
 goto END;
 }

 /* nag_zunmqr (f08auc).
 * Compute C = (C1) = (Q**H)*B, storing the result in b.
 * (C2)
nag_zunmqr(order, Nag_LeftSide, Nag_ConjTrans, m, nrhs, n, a, pda, tau, b, pdb, &fail);
if (fail.code != NE_NOERROR)
{
 printf("Error from nag_zunmqr (f08auc).\n%s\n", fail.message);
 exit_status = 1;
 goto END;
}

/* Choose tol to reflect the relative accuracy of the input data */
tol = 0.01;

/* nag_complex_abs (a02dbc).
* Determine and print the rank, k, of R relative to tol.
*/
for (k = 1; k <= n; ++k)
 if (nag_complex_abs(A(k, k)) <= tol * nag_complex_abs(A(1, 1)))
 break;
--k;

printf("Tolerance used to estimate the rank of A\n");
printf("%11.2e\n", tol);
printf("Estimated rank of A\n");
printf("%6"NAG_IFMT"\n", k);

/* nag_ztzrzf (f08bvc).
* Compute the RZ factorization of the k by k part of R as
* (R1 R2) = (T 0)*Z.
*/
nag_ztzrzf(order, k, n, a, pda, tau, &fail);
if (fail.code != NE_NOERROR)
{
 printf("Error from nag_ztzrzf (f08bvc).\n%s\n", fail.message);
 exit_status = 1;
 goto END;
}

/* nag_ztrsm (f16zjc).
* Compute least-squares solutions of triangular problems by
* back substitution in T*Y1 = C1, storing the result in b.
*/
nag_ztrsm(order, Nag_LeftSide, Nag_Upper, Nag_NoTrans, Nag_NonUnitDiag, k,
 nrhs, one, a, pda, b, pdb, &fail);
if (fail.code != NE_NOERROR)
{
 printf("Error from nag_ztrsm (f16zjc).\n%s\n", fail.message);
 exit_status = 1;
 goto END;
}

/* nag_zge_norm (f16uac).
* Compute estimates of the square roots of the residual sums of
* squares (2-norm of each of the columns of C2).
*/
for (j = 1; j <= nrhs; ++j)
 nag_zge_norm(order, Nag_FrobeniusNorm, m - k, 1, &B(k + 1, j), pdb,
 &rnorm[j - 1], &fail);
if (fail.code != NE_NOERROR)
{
 printf("Error from nag_zge_norm (f16uac).\n%s\n", fail.message);
 exit_status = 1;
 goto END;
}

/* nag_zge_load (f16thc).
* Set the remaining elements of the solutions to zero (to give
* the minimum-norm solutions), Y2 = 0.
*/
nag_zge_load(order, n - k, nrhs, zero, zero, &B(k + 1, 1), pdb, &fail);
if (fail.code != NE_NOERROR)
{
printf("Error from nag_zge_load (f16thc).\n%s\n", fail.message);
exit_status = 1;
goto END;
}
/* nag_zurmrz (f08bxc).
* Form \(W = (Z^H)Y \).
*/
nag_zunmrz(order, Nag_LeftSide, Nag_ConjTrans, n, nrhs, k, n - k, a, pda,
tau, b, pdb, &fail);
if (fail.code != NE_NOERROR)
{
printf("Error from nag_zurmrz (f08bxc).\n%s\n", fail.message);
exit_status = 1;
goto END;
}
/* Permute the least-squares solutions stored in \(B \) to give \(X = P^*W \) */
for (j = 1; j <= nrhs; ++j) {
 for (i = 1; i <= n; ++i) {
 work[jpvt[i - 1] - 1].re = B(i, j).re;
 work[jpvt[i - 1] - 1].im = B(i, j).im;
 }
 /* nag_zge_copy (f16tfc).
 * Copy matrix.
 */
nag_zge_copy(order, Nag_NoTrans, n, 1, work, pdw, &B(1, j), pdb, &fail);
 if (fail.code != NE_NOERROR)
 {
 printf("Error from nag_zge_copy (f16tfc).\n%s\n", fail.message);
 exit_status = 1;
goto END;
 }
}/* nag_gen_complx_mat_print_comp (x04dbc).
* Print least-squares solutions.
*/
fflush(stdout);
nag_gen_complx_mat_print_comp(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n,
nrhs, b, pdb, Nag_BracketForm, "%7.4f", "Least-squares solution(s)",
Nag_IntegerLabels, 0, Nag_IntegerLabels, 0, 80, 0, 0, &fail);
if (fail.code != NE_NOERROR)
{
 printf("Error from nag_gen_complx_mat_print_comp (x04dbc).\n%s\n", fail.message);
 exit_status = 1;
goto END;
}/* Print the square roots of the residual sums of squares */
for (j = 0; j < nrhs; ++j)
printf("%11.2e%s", rnorm[j], j%7 == 6?"\n":" ");
END:
NAG_FREE(a);
NAG_FREE(b);
NAG_FREE(tau);
NAG_FREE(work);
NAG_FREE(rnorm);
NAG_FREE(jpvt);
return exit_status;
}

#undef A
#undef B

10.2 Program Data

nag_ztzrzf (f08bvc) Example Program Data

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

:Values of m, n and nrhs

(0.47, -0.34) (-0.40, 0.54) (0.60, 0.01) (0.80, -1.02)
(-0.32, -0.23) (-0.05, 0.20) (-0.26, -0.44) (-0.43, 0.17)
(0.35, -0.60) (-0.52, -0.34) (0.87, -0.11) (-0.34, -0.09)
(0.89, 0.71) (-0.45, -0.45) (-0.02, -0.57) (1.14, -0.78)
(-0.19, 0.06) (0.11, -0.85) (1.44, 0.80) (0.07, 1.14) :End of matrix A

(-1.08, -2.59) (2.22, 2.35)
(-2.61, -1.49) (1.62, -1.48)
(3.13, -3.61) (1.65, 3.43)
(7.33, -8.01) (-0.98, 3.08)
(9.12, 7.63) (-2.84, 2.78) :End of matrix B

10.3 Program Results

nag_ztzrzf (f08bvc) Example Program Results

Tolerance used to estimate the rank of A
1.00e-02
Estimated rank of A
3

Least-squares solution(s)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
| 1 (1.1669, -3.3224) (-0.5023, 1.8323)
2 (1.3486, 5.5027) (-1.4418, -1.6465)
3 (4.1764, 2.3435) (0.2908, 1.4900)
4 (0.6467, 0.0107) (-0.2453, 0.3951)

Square root(s) of the residual sum(s) of squares
2.51e-01 8.10e-02