NAG Library Function Document

nag_dgeqpf (f08bec)

1 Purpose

nag_dgeqpf (f08bec) computes the QR factorization, with column pivoting, of a real m by n matrix.

2 Specification

```c
#include <nag.h>
#include <nagf08.h>

void nag_dgeqpf (Nag_OrderType order, Integer m, Integer n, double a[],
                  Integer pda, Integer jpvt[], double tau[], NagError *fail)
```

3 Description

nag_dgeqpf (f08bec) forms the QR factorization, with column pivoting, of an arbitrary rectangular real m by n matrix.

If $m \geq n$, the factorization is given by:

\[AP = \begin{pmatrix} R \\ 0 \end{pmatrix} \]

where R is an n by n upper triangular matrix, Q is an m by m orthogonal matrix and P is an n by n permutation matrix. It is sometimes more convenient to write the factorization as

\[AP = (Q_1 Q_2) \begin{pmatrix} R \\ 0 \end{pmatrix} \]

which reduces to

\[AP = Q_1 R, \]

where Q_1 consists of the first n columns of Q, and Q_2 the remaining $m - n$ columns.

If $m < n$, R is trapezoidal, and the factorization can be written

\[AP = Q \begin{pmatrix} R_1 \\ R_2 \end{pmatrix}, \]

where R_1 is upper triangular and R_2 is rectangular.

The matrix Q is not formed explicitly but is represented as a product of $\min(m, n)$ elementary reflectors (see the f08 Chapter Introduction for details). Functions are provided to work with Q in this representation (see Section 9).

Note also that for any $k < n$, the information returned in the first k columns of the array a represents a QR factorization of the first k columns of the permuted matrix AP.

The function allows specified columns of A to be moved to the leading columns of AP at the start of the factorization and fixed there. The remaining columns are free to be interchanged so that at the ith stage the pivot column is chosen to be the column which maximizes the 2-norm of elements i to m over columns i to n.

4 References

5 Arguments

1: \texttt{order} – Nag_OrderType \hspace{1cm} \textit{Input}

\textit{On entry:} the \texttt{order} argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by \texttt{order} = Nag_RowMajor. See Section 3.2.1.3 in the Essential Introduction for a more detailed explanation of the use of this argument.

\textit{Constraint:} \texttt{order} = Nag_RowMajor or Nag_ColMajor.

2: \texttt{m} – Integer \hspace{1cm} \textit{Input}

\textit{On entry:} \(m \), the number of rows of the matrix \(A \).

\textit{Constraint:} \(m \geq 0 \).

3: \texttt{n} – Integer \hspace{1cm} \textit{Input}

\textit{On entry:} \(n \), the number of columns of the matrix \(A \).

\textit{Constraint:} \(n \geq 0 \).

4: \texttt{a}[\textit{dim}] – double \hspace{1cm} \textit{Input/Output}

\textit{Note:} the dimension, \textit{dim}, of the array \texttt{a} must be at least

\[
\max(1, \texttt{pda} \times n) \text{ when } \texttt{order} = \text{Nag_ColMajor}; \\
\max(1, m \times \texttt{pda}) \text{ when } \texttt{order} = \text{Nag_RowMajor}.
\]

The \((i, j)\)th element of the matrix \(A \) is stored in

\[
\begin{align*}
\texttt{a}[(j - 1) \times \texttt{pda} + i - 1] & \text{ when } \texttt{order} = \text{Nag_ColMajor}; \\
\texttt{a}[(i - 1) \times \texttt{pda} + j - 1] & \text{ when } \texttt{order} = \text{Nag_RowMajor}.
\end{align*}
\]

\textit{On entry:} the \(m \) by \(n \) matrix \(A \).

\textit{On exit:} if \(m \geq n \), the elements below the diagonal are overwritten by details of the orthogonal matrix \(Q \) and the upper triangle is overwritten by the corresponding elements of the \(n \) by \(n \) upper triangular matrix \(R \).

If \(m < n \), the strictly lower triangular part is overwritten by details of the orthogonal matrix \(Q \) and the remaining elements are overwritten by the corresponding elements of the \(m \) by \(n \) upper trapezoidal matrix \(R \).

5: \texttt{pda} – Integer \hspace{1cm} \textit{Input}

\textit{On entry:} the stride separating row or column elements (depending on the value of \texttt{order}) in the array \texttt{a}.

\textit{Constraints:}

\[
\begin{align*}
\text{if } \texttt{order} = \text{Nag_ColMajor}, & \quad \texttt{pda} \geq \max(1, m); \\
\text{if } \texttt{order} = \text{Nag_RowMajor}, & \quad \texttt{pda} \geq \max(1, n).
\end{align*}
\]

6: \texttt{jpvt}[\textit{dim}] – Integer \hspace{1cm} \textit{Input/Output}

\textit{Note:} the dimension, \textit{dim}, of the array \texttt{jpvt} must be at least \(\max(1, n) \).

\textit{On entry:} if \(\texttt{jpvt}[i - 1] \neq 0 \), then the \(i \) th column of \(A \) is moved to the beginning of \(AP \) before the decomposition is computed and is fixed in place during the computation. Otherwise, the \(i \) th column of \(A \) is a free column (i.e., one which may be interchanged during the computation with any other free column).

\textit{On exit:} details of the permutation matrix \(P \). More precisely, if \(\texttt{jpvt}[i - 1] = k \), then the \(k \)th column of \(A \) is moved to become the \(i \)th column of \(AP \); in other words, the columns of \(AP \) are the columns of \(A \) in the order \(\texttt{jpvt}[0], \texttt{jpvt}[1], \ldots, \texttt{jpvt}[n - 1] \).
7: \(\tau[\min(m, n)] \) – double

\(\text{Output} \)

On exit: further details of the orthogonal matrix \(Q \).

8: \(\text{fail} \) – NagError*

\(\text{Input/Output} \)

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM

On entry, argument \(\langle \text{value} \rangle \) had an illegal value.

NE_INT

On entry, \(m = \langle \text{value} \rangle \).

Constraint: \(m \geq 0 \).

On entry, \(n = \langle \text{value} \rangle \).

Constraint: \(n \geq 0 \).

On entry, \(pda = \langle \text{value} \rangle \).

Constraint: \(pda > 0 \).

NE_INT_2

On entry, \(pda = \langle \text{value} \rangle \) and \(m = \langle \text{value} \rangle \).

Constraint: \(pda \geq \max(1, m) \).

On entry, \(pda = \langle \text{value} \rangle \) and \(n = \langle \text{value} \rangle \).

Constraint: \(pda \geq \max(1, n) \).

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.

See Section 3.6.6 in the Essential Introduction for further information.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.

See Section 3.6.5 in the Essential Introduction for further information.

7 Accuracy

The computed factorization is the exact factorization of a nearby matrix \((A + E) \), where

\[\|E\|_2 = O(\epsilon) \|A\|_2, \]

and \(\epsilon \) is the machine precision.

8 Parallelism and Performance

nag_dgeqpf (f08bec) is not threaded by NAG in any implementation.
nag_dgeqpf (f08bec) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users’ Note for your implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately $\frac{2}{3}n^2(3m - n)$ if $m \geq n$ or $\frac{2}{3}m^2(3n - m)$ if $m < n$.

To form the orthogonal matrix Q nag_dgeqpf (f08bec) may be followed by a call to nag_dorgqr (f08afc):

```c
nag_dorgqr(order,m,m,MIN(m,n),&a,pda,tau,&fail)
```

but note that the second dimension of the array a must be at least m, which may be larger than was required by nag_dgeqpf (f08bec).

When $m \geq n$, it is often only the first n columns of Q that are required, and they may be formed by the call:

```c
nag_dorgqr(order,m,n,n,&a,pda,tau,&fail)
```

To apply Q to an arbitrary real rectangular matrix C, nag_dgeqpf (f08bec) may be followed by a call to nag_dormqr (f08agc). For example,

```c
nag_dormqr(order,Nag_LeftSide,Nag_Trans,m,p,MIN(m,n),&a,pda,tau, + &c,pdc,&fail)
```

forms $C = QT C$, where C is m by p.

To compute a QR factorization without column pivoting, use nag_dgeqrf (f08aec).

The complex analogue of this function is nag_zgeqpf (f08bsc).

10 Example

This example finds the basic solutions for the linear least squares problems

$$\text{minimize } \|Ax_i - b_i\|_2, \quad i = 1, 2$$

where b_1 and b_2 are the columns of the matrix B,

$$A = \begin{pmatrix} -0.99 & 0.14 & -0.46 & 0.68 & 1.29 \\ -1.56 & 0.20 & 0.29 & 1.09 & 0.51 \\ -1.48 & -0.43 & 0.89 & -0.71 & -0.96 \\ -1.09 & 0.84 & 0.77 & 2.11 & -1.27 \\ 0.08 & 0.55 & -1.13 & 0.14 & 1.74 \\ -1.59 & -0.72 & 1.06 & 1.24 & 0.34 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} -0.01 & -0.04 \\ 0.04 & -0.03 \\ 0.05 & 0.01 \\ -0.03 & -0.02 \\ 0.02 & 0.05 \\ -0.06 & 0.07 \end{pmatrix}.$$

Here A is approximately rank-deficient, and hence it is preferable to use nag_dgeqpf (f08bec) rather than nag_dgeqrf (f08aec).

10.1 Program Text

```c
/* nag_dgeqpf (f08bec) Example Program. */
/* Copyright 2014 Numerical Algorithms Group. */
/* * Mark 7, 2001. */
*/
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
```
```c
#include <nagf08.h>
#include <nagf16.h>
#include <nagx04.h>

int main(void)
{
    /* Scalars */
    double tol;
    Integer i, j, jpvt_len, k, m, n, nrhs;
    Integer pda, pdb, pdx, tau_len;
    Integer exit_status = 0;
    NagError fail;
    Nag_OrderType order;
    /* Arrays */
    double *a = 0, *b = 0, *tau = 0, *x = 0;
    Integer *jpvt = 0;
    #ifdef NAG_COLUMN_MAJOR
    #define A(I, J) a[(J - 1) * pda + I - 1]
    #define B(I, J) b[(J - 1) * pdb + I - 1]
    #define X(I, J) x[(J - 1) * pdx + I - 1]
    order = Nag_ColMajor;
    #else
    #define A(I, J) a[(I - 1) * pda + J - 1]
    #define B(I, J) b[(I - 1) * pdb + J - 1]
    #define X(I, J) x[(I - 1) * pdx + J - 1]
    order = Nag_RowMajor;
    #endif
    INIT_FAIL(fail);
    printf("nag_dgeqpf (f08bec) Example Program Results\n\n");
    /* Skip heading in data file */
    #ifdef _WIN32
    scanf_s("%*[\n] ");
    #else
    scanf("%*[\n] ");
    #endif
    #ifdef _WIN32
    scanf_s("%"NAG_IFMT"%"NAG_IFMT"%"NAG_IFMT"%*[\n] ", &m, &n, &nrhs);
    #else
    scanf("%"NAG_IFMT"%"NAG_IFMT"%"NAG_IFMT"%*[\n] ", &m, &n, &nrhs);
    #endif
    #ifdef NAG_COLUMN_MAJOR
    pda = m;
    pdb = m;
    pdx = m;
    #else
    pda = n;
    pdb = nrhs;
    pdx = nrhs;
    #endif
    tau_len = MIN(m, n);
    jpvt_len = n;
    /* Allocate memory */
    if (!(a = NAG_ALLOC(m * n, double)) ||
        !(b = NAG_ALLOC(m * nrhs, double)) ||
        !(tau = NAG_ALLOC(tau_len, double)) ||
        !(x = NAG_ALLOC(m * nrhs, double)) ||
        !(jpvt = NAG_ALLOC(jpvt_len, Integer)))
    {
        printf("Allocation failure\n");
        exit_status = -1;
        goto END;
    }
    /* Read A and B from data file */
    for (i = 1; i <= m; ++i)
    {
        /* Read A and B from data file */
    }
}
```
for (j = 1; j <= n; ++j)
 #ifdef _WIN32
 scanf_s("%lf", &A(i, j));
 #else
 scanf("%lf", &A(i, j));
 #endif
} // End of for loop over j

#ifdef _WIN32 // Start of if statement
 scanf_s("%[*\n] ");
#else
 scanf("%[*\n] ");
#endif // End of if statement

for (i = 1; i <= m; ++i)
 {
 for (j = 1; j <= nrhs; ++j)
 #ifdef _WIN32
 scanf_s("%lf", &B(i, j));
 #else
 scanf("%lf", &B(i, j));
 #endif
 } // End of for loop over j

#ifdef _WIN32 // Start of if statement
 scanf_s("%[*\n] ");
#else
 scanf("%[*\n] ");
#endif // End of if statement

/* Initialize JPVT to be zero so that all columns are free */
/* nag_iload (f16dbc). */
 nag_iload(n, 0, jpvt, 1, &fail);
 /* Compute the QR factorization of A */
 /* nag_dgeqpf (f08bec). */
 /* QR factorization of real general rectangular matrix with column pivoting */
 nag_dgeqpf(order, m, n, a, pda, jpvt, tau, &fail);
 if (fail.code != NE_NOERROR)
 {
 printf("Error from nag_dgeqpf (f08bec).\n%s\n", fail.message);
 exit_status = 1;
 goto END;
 }

 /* Choose TOL to reflect the relative accuracy of the input data */
 tol = 0.01;

 /* Determine which columns of R to use */
 for (k = 1; k <= n; ++k)
 {
 if (ABS(A(k, k)) <= tol * ABS(A(1, 1)))
 break;
 }
 --k;

 /* Compute C = (Q**T)*B, storing the result in B */
 /* nag_dormqr (f08agc). */
 /* Apply orthogonal transformation determined by nag_dgeqrf */
 /* (f08aec) or nag_dgeqpf (f08bec) */
 nag_dormqr(order, Nag_LeftSide, Nag_Trans, m, nrhs, n, a, pda, tau, b, pdb, &fail);
 if (fail.code != NE_NOERROR)
 {
 printf("Error from nag_dormqr (f08agc).\n%s\n", fail.message);
 exit_status = 1;
 goto END;
 }
Compute least-squares solution by backsubstitution in $R \ast B = C$

Solution of real triangular system of linear equations, multiple right-hand sides

```
if (fail.code != NE_NOERROR)
{
    printf("Error from nag_dtrtrs (f07tec).\n%s\n", fail.message);
    exit_status = 1;
    goto END;
}
```

Unscramble the least-squares solution stored in B

```
for (i = 1; i <= n; ++i)
{
    for (j = 1; j <= nrhs; ++j)
        B(i, j) = 0.0;
}
```

Print least-squares solution

```
for (i = 1; i <= n; ++i)
{
    for (j = 1; j <= nrhs; ++j)
        X(jpvt[i - 1], j) = B(i, j);
}
```

Program Data

```
nag_dgeqpf (f08bec) Example Program Data
6 5 2 :Values of M, N and NRHS
-0.09 0.14 -0.46 0.68 1.29
-1.56 0.20 0.29 1.09 0.51
-1.48 -0.43 0.89 -0.71 -0.96
-1.09 0.84 0.77 2.11 -1.27
0.08 0.55 -1.13 0.14 1.74
-1.59 -0.72 1.06 1.24 0.34 :End of matrix A
-0.01 -0.04
0.04 -0.03
0.05 0.01
-0.03 -0.02
0.02 0.05
-0.06 0.07 :End of matrix B
```
10.3 Program Results

nag_dgeqpf (f08bec) Example Program Results

Least-squares solution

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.0370</td>
<td>-0.0044</td>
</tr>
<tr>
<td>2</td>
<td>0.0647</td>
<td>-0.0335</td>
</tr>
<tr>
<td>3</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>4</td>
<td>-0.0515</td>
<td>0.0018</td>
</tr>
<tr>
<td>5</td>
<td>0.0066</td>
<td>0.0102</td>
</tr>
</tbody>
</table>